File size: 3,873 Bytes
0b94c68
 
 
66dd702
 
 
 
 
 
 
0b94c68
 
 
 
 
 
66dd702
15b1bde
 
0b94c68
 
 
c256433
15b1bde
d9270ab
 
0b94c68
d9270ab
1e0c0b7
0b94c68
 
 
9073147
 
 
c256433
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9270ab
5862f93
 
c256433
 
9073147
0b94c68
 
c256433
 
15b1bde
 
e0faa79
9073147
c256433
 
9073147
e0faa79
9073147
c256433
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import sys
from pathlib import Path
from vre.representations import Representation
from vre_repository.color.rgb import RGB
from vre_repository.color.hsv import HSV
from vre_repository.depth import DepthRepresentation
from vre_repository.normals import NormalsRepresentation
from vre_repository.edges import EdgesRepresentation
# from vre_repository.optical_flow import OpticalFlowRepresentation
from vre_repository.semantic_segmentation import SemanticRepresentation

def get_gt_tasks() -> dict[str, Representation]:
    color_map = [[0, 255, 0], [0, 127, 0], [255, 255, 0], [255, 255, 255],
                [255, 0, 0], [0, 0, 255], [0, 255, 255], [127, 127, 63]]
    classes_8 = ["land", "forest", "residential", "road", "little-objects", "water", "sky", "hill"]
    tasks = [
        SemanticRepresentation("semantic_output", classes=classes_8, color_map=color_map, disk_data_argmax=True),
        DepthRepresentation("depth_output", min_depth=0, max_depth=300),
        NormalsRepresentation("camera_normals_output"),
    ]
    return {t.name: t for t in tasks}

def get_other_tasks(include_semantics_original: bool, include_ci: bool) -> dict[str, Representation]:
    sys.path.append(str(Path(__file__).parents[1] / "semantic_mapper"))
    from semantic_mapper import (m2f_mapillary, m2f_coco, m2f_r50_mapillary,
                                 BinaryMapper, mapillary_classes, coco_classes)
    tasks = [
        rgb := RGB("rgb"),
        # OpticalFlowRepresentation("opticalflow_rife"),
        DepthRepresentation("depth_marigold", min_depth=0, max_depth=1),
        NormalsRepresentation("normals_svd(depth_marigold)")
    ]

    if include_semantics_original:
        tasks.extend([m2f_mapillary, m2f_coco, m2f_r50_mapillary])
    if include_ci:
        transportation_mapping = [
            {
                "others": [c for c in mapillary_classes if c not in
                        (cls := ["Bike Lane", "Crosswalk - Plain", "Curb Cut", "Parking", "Rail Track", "Road",
                                    "Service Lane", "Sidewalk", "Bridge", "Tunnel", "Bicyclist", "Motorcyclist",
                                    "Other Rider", "Lane Marking - Crosswalk", "Lane Marking - General",
                                    "Traffic Light", "Traffic Sign (Back)", "Traffic Sign (Front)", "Bicycle", "Boat",
                                    "Bus", "Car", "Caravan", "Motorcycle", "On Rails", "Other Vehicle", "Trailer",
                                    "Truck", "Wheeled Slow", "Car Mount", "Ego Vehicle"])],
                "transportation": cls,
            },
            {
                "others": [c for c in coco_classes if c not in
                        (cls := ["bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat",
                                    "road", "railroad", "pavement-merged"])],
                "transportation": cls,
            },
        ]

        tasks.extend([
            HSV("hsv", [rgb]),
            DepthRepresentation("depth_dpt", min_depth=0, max_depth=1),
            EdgesRepresentation("edges_dexined"),
            BinaryMapper("transportation_ci", [m2f_mapillary, m2f_coco], transportation_mapping, mode="at_least_one"),
        ])

    return {t.name: t for t in tasks}

def get_dronescapes_task_types(include_semantics_original: bool, include_gt: bool,
                               include_ci: bool) -> dict[str, Representation]:
    sys.path.append(str(Path(__file__).parents[1] / "semantic_mapper"))
    from semantic_mapper import get_new_semantic_mapped_tasks
    res = {
        **get_new_semantic_mapped_tasks(),
        **get_other_tasks(include_semantics_original, include_ci),
        **(get_gt_tasks() if include_gt else {}),
    }
    return res

dronescapes_task_types = get_dronescapes_task_types(include_semantics_original=False, include_gt=True, include_ci=False)