Meehai commited on
Commit
652248b
·
1 Parent(s): 6d72a48

adding these here

Browse files
scripts/semantic_mapper/semantic_mapper.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
scripts/semantic_mapper/semantic_mapper.py ADDED
@@ -0,0 +1,448 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ """semantic_mapper.py -- primivites for new tasks based on existing CV/dronescapes tasks"""
3
+ from overrides import overrides
4
+ from pathlib import Path
5
+ from functools import reduce
6
+ from pprint import pprint
7
+ import numpy as np
8
+ import torch as tr
9
+
10
+ from vre.utils import (semantic_mapper, colorize_semantic_segmentation, DiskData, MemoryData, ReprOut, reorder_dict,
11
+ collage_fn, image_add_title, lo)
12
+ from vre.readers.multitask_dataset import MultiTaskDataset, MultiTaskItem
13
+ from vre.representations import TaskMapper, NpIORepresentation, Representation, build_representations_from_cfg
14
+ from vre.representations.cv_representations import DepthRepresentation, NormalsRepresentation, SemanticRepresentation
15
+
16
+ def plot_one(data: MultiTaskItem, title: str, order: list[str] | None,
17
+ name_to_task: dict[str, Representation]) -> np.ndarray:
18
+ """simple plot function: plot_one(reader[0][0], reader[0][1], None, reader.name_to_task)"""
19
+ def vre_plot_fn(rgb: tr.Tensor, x: tr.Tensor, node: Representation) -> np.ndarray:
20
+ node.data = ReprOut(rgb.cpu().detach().numpy()[None], MemoryData(x.cpu().detach().numpy()[None]), [0])
21
+ return node.make_images()[0]
22
+ img_data = {k: vre_plot_fn(data["rgb"], v, name_to_task[k]) for k, v in data.items()}
23
+ img_data = reorder_dict(img_data, order) if order is not None else img_data
24
+ titles = [title if len(title) < 40 else f"{title[0:19]}..{title[-19:]}" for title in img_data]
25
+ collage = collage_fn(list(img_data.values()), titles=titles, size_px=40)
26
+ collage = image_add_title(collage, title, size_px=55, top_padding=110)
27
+ return collage
28
+
29
+ coco_classes = ["person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
30
+ "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
31
+ "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
32
+ "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard",
33
+ "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple",
34
+ "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch",
35
+ "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard",
36
+ "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase",
37
+ "scissors", "teddy bear", "hair drier", "toothbrush", "banner", "blanket", "bridge", "cardboard",
38
+ "counter", "curtain", "door-stuff", "floor-wood", "flower", "fruit", "gravel", "house", "light",
39
+ "mirror-stuff", "net", "pillow", "platform", "playingfield", "railroad", "river", "road", "roof",
40
+ "sand", "sea", "shelf", "snow", "stairs", "tent", "towel", "wall-brick", "wall-stone", "wall-tile",
41
+ "wall-wood", "water-other", "window-blind", "window-other", "tree-merged", "fence-merged",
42
+ "ceiling-merged", "sky-other-merged", "cabinet-merged", "table-merged", "floor-other-merged",
43
+ "pavement-merged", "mountain-merged", "grass-merged", "dirt-merged", "paper-merged",
44
+ "food-other-merged", "building-other-merged", "rock-merged", "wall-other-merged", "rug-merged"]
45
+ coco_color_map = [[220, 20, 60], [119, 11, 32], [0, 0, 142], [0, 0, 230], [106, 0, 228], [0, 60, 100], [0, 80, 100],
46
+ [0, 0, 70], [0, 0, 192], [250, 170, 30], [100, 170, 30], [220, 220, 0], [175, 116, 175], [250, 0, 30],
47
+ [165, 42, 42], [255, 77, 255], [0, 226, 252], [182, 182, 255], [0, 82, 0], [120, 166, 157],
48
+ [110, 76, 0], [174, 57, 255], [199, 100, 0], [72, 0, 118], [255, 179, 240], [0, 125, 92],
49
+ [209, 0, 151], [188, 208, 182], [0, 220, 176], [255, 99, 164], [92, 0, 73], [133, 129, 255],
50
+ [78, 180, 255], [0, 228, 0], [174, 255, 243], [45, 89, 255], [134, 134, 103], [145, 148, 174],
51
+ [255, 208, 186], [197, 226, 255], [171, 134, 1], [109, 63, 54], [207, 138, 255], [151, 0, 95],
52
+ [9, 80, 61], [84, 105, 51], [74, 65, 105], [166, 196, 102], [208, 195, 210], [255, 109, 65],
53
+ [0, 143, 149], [179, 0, 194], [209, 99, 106], [5, 121, 0], [227, 255, 205], [147, 186, 208],
54
+ [153, 69, 1], [3, 95, 161], [163, 255, 0], [119, 0, 170], [0, 182, 199], [0, 165, 120],
55
+ [183, 130, 88], [95, 32, 0], [130, 114, 135], [110, 129, 133], [166, 74, 118], [219, 142, 185],
56
+ [79, 210, 114], [178, 90, 62], [65, 70, 15], [127, 167, 115], [59, 105, 106], [142, 108, 45],
57
+ [196, 172, 0], [95, 54, 80], [128, 76, 255], [201, 57, 1], [246, 0, 122], [191, 162, 208],
58
+ [255, 255, 128], [147, 211, 203], [150, 100, 100], [168, 171, 172], [146, 112, 198],
59
+ [210, 170, 100], [92, 136, 89], [218, 88, 184], [241, 129, 0], [217, 17, 255], [124, 74, 181],
60
+ [70, 70, 70], [255, 228, 255], [154, 208, 0], [193, 0, 92], [76, 91, 113], [255, 180, 195],
61
+ [106, 154, 176], [230, 150, 140], [60, 143, 255], [128, 64, 128], [92, 82, 55], [254, 212, 124],
62
+ [73, 77, 174], [255, 160, 98], [255, 255, 255], [104, 84, 109], [169, 164, 131], [225, 199, 255],
63
+ [137, 54, 74], [135, 158, 223], [7, 246, 231], [107, 255, 200], [58, 41, 149], [183, 121, 142],
64
+ [255, 73, 97], [107, 142, 35], [190, 153, 153], [146, 139, 141], [70, 130, 180], [134, 199, 156],
65
+ [209, 226, 140], [96, 36, 108], [96, 96, 96], [64, 170, 64], [152, 251, 152], [208, 229, 228],
66
+ [206, 186, 171], [152, 161, 64], [116, 112, 0], [0, 114, 143], [102, 102, 156], [250, 141, 255]]
67
+ mapillary_classes = ["Bird", "Ground Animal", "Curb", "Fence", "Guard Rail", "Barrier", "Wall", "Bike Lane",
68
+ "Crosswalk - Plain", "Curb Cut", "Parking", "Pedestrian Area", "Rail Track", "Road",
69
+ "Service Lane", "Sidewalk", "Bridge", "Building", "Tunnel", "Person", "Bicyclist",
70
+ "Motorcyclist", "Other Rider", "Lane Marking - Crosswalk", "Lane Marking - General",
71
+ "Mountain", "Sand", "Sky", "Snow", "Terrain", "Vegetation", "Water", "Banner", "Bench",
72
+ "Bike Rack", "Billboard", "Catch Basin", "CCTV Camera", "Fire Hydrant", "Junction Box",
73
+ "Mailbox", "Manhole", "Phone Booth", "Pothole", "Street Light", "Pole", "Traffic Sign Frame",
74
+ "Utility Pole", "Traffic Light", "Traffic Sign (Back)", "Traffic Sign (Front)", "Trash Can",
75
+ "Bicycle", "Boat", "Bus", "Car", "Caravan", "Motorcycle", "On Rails", "Other Vehicle", "Trailer",
76
+ "Truck", "Wheeled Slow", "Car Mount", "Ego Vehicle"]
77
+ mapillary_color_map = [[165, 42, 42], [0, 192, 0], [196, 196, 196], [190, 153, 153], [180, 165, 180], [90, 120, 150],
78
+ [102, 102, 156], [128, 64, 255], [140, 140, 200], [170, 170, 170], [250, 170, 160], [96, 96, 96],
79
+ [230, 150, 140], [128, 64, 128], [110, 110, 110], [244, 35, 232], [150, 100, 100], [70, 70, 70],
80
+ [150, 120, 90], [220, 20, 60], [255, 0, 0], [255, 0, 100], [255, 0, 200], [200, 128, 128],
81
+ [255, 255, 255], [64, 170, 64], [230, 160, 50], [70, 130, 180], [190, 255, 255], [152, 251, 152],
82
+ [107, 142, 35], [0, 170, 30], [255, 255, 128], [250, 0, 30], [100, 140, 180], [220, 220, 220],
83
+ [220, 128, 128], [222, 40, 40], [100, 170, 30], [40, 40, 40], [33, 33, 33], [100, 128, 160],
84
+ [142, 0, 0], [70, 100, 150], [210, 170, 100], [153, 153, 153], [128, 128, 128], [0, 0, 80],
85
+ [250, 170, 30], [192, 192, 192], [220, 220, 0], [140, 140, 20], [119, 11, 32], [150, 0, 255],
86
+ [0, 60, 100], [0, 0, 142], [0, 0, 90], [0, 0, 230], [0, 80, 100], [128, 64, 64], [0, 0, 110],
87
+ [0, 0, 70], [0, 0, 192], [32, 32, 32], [120, 10, 10]]
88
+
89
+ m2f_coco = SemanticRepresentation("semantic_mask2former_coco_47429163_0", classes=coco_classes,
90
+ color_map=coco_color_map)
91
+ m2f_mapillary = SemanticRepresentation("semantic_mask2former_mapillary_49189528_0", classes=mapillary_classes,
92
+ color_map=mapillary_color_map)
93
+ m2f_r50_mapillary = SemanticRepresentation("semantic_mask2former_mapillary_49189528_1", classes=mapillary_classes,
94
+ color_map=mapillary_color_map)
95
+ marigold = DepthRepresentation("depth_marigold", min_depth=0, max_depth=1)
96
+ normals_svd_marigold = NormalsRepresentation("normals_svd(depth_marigold)")
97
+
98
+ class SemanticMask2FormerMapillaryConvertedPaper(TaskMapper, NpIORepresentation):
99
+ def __init__(self, name: str, dependencies: list[Representation]):
100
+ TaskMapper.__init__(self, name=name, n_channels=8, dependencies=dependencies)
101
+ NpIORepresentation.__init__(self)
102
+ self.mapping = {
103
+ "land": ["Terrain", "Sand", "Snow"],
104
+ "forest": ["Vegetation"],
105
+ "residential": ["Building", "Utility Pole", "Pole", "Fence", "Wall", "Manhole", "Street Light", "Curb",
106
+ "Guard Rail", "Caravan", "Junction Box", "Traffic Sign (Front)", "Billboard", "Banner",
107
+ "Mailbox", "Traffic Sign (Back)", "Bench", "Fire Hydrant", "Trash Can", "CCTV Camera",
108
+ "Traffic Light", "Barrier", "Rail Track", "Phone Booth", "Curb Cut", "Traffic Sign Frame",
109
+ "Bike Rack"],
110
+ "road": ["Road", "Lane Marking - General", "Sidewalk", "Bridge", "Other Vehicle", "Motorcyclist", "Pothole",
111
+ "Catch Basin", "Car Mount", "Tunnel", "Parking", "Service Lane", "Lane Marking - Crosswalk",
112
+ "Pedestrian Area", "On Rails", "Bike Lane", "Crosswalk - Plain"],
113
+ "little-objects": ["Car", "Person", "Truck", "Boat", "Wheeled Slow", "Trailer", "Ground Animal", "Bicycle",
114
+ "Motorcycle", "Bird", "Bus", "Ego Vehicle", "Bicyclist", "Other Rider"],
115
+ "water": ["Water"],
116
+ "sky": ["Sky"],
117
+ "hill": ["Mountain"]
118
+ }
119
+ self.color_map = [[0, 255, 0], [0, 127, 0], [255, 255, 0], [255, 255, 255],
120
+ [255, 0, 0], [0, 0, 255], [0, 255, 255], [127, 127, 63]]
121
+ self.original_classes = dependencies[0].classes
122
+ assert set(reduce(lambda x, y: x + y, self.mapping.values(), [])) == set(self.original_classes)
123
+ self.classes = list(self.mapping.keys())
124
+ self.n_classes = len(self.classes)
125
+ self.output_dtype = "uint8"
126
+
127
+ @property
128
+ @overrides
129
+ def n_channels(self) -> int:
130
+ return self.n_classes
131
+
132
+ @overrides
133
+ def make_images(self) -> np.ndarray:
134
+ return colorize_semantic_segmentation(self.data.output.argmax(-1), self.classes, self.color_map)
135
+
136
+ @overrides
137
+ def merge_fn(self, dep_data: list[MemoryData]) -> MemoryData:
138
+ m2f_mapillary = dep_data[0].argmax(-1)
139
+ m2f_mapillary_converted = semantic_mapper(m2f_mapillary, self.mapping, self.original_classes)
140
+ return self.disk_to_memory_fmt(m2f_mapillary_converted)
141
+
142
+ @overrides
143
+ def memory_to_disk_fmt(self, memory_data: MemoryData) -> DiskData:
144
+ return memory_data.argmax(-1).astype(np.uint8)
145
+
146
+ @overrides
147
+ def disk_to_memory_fmt(self, disk_data: DiskData) -> MemoryData:
148
+ return MemoryData(np.eye(self.n_classes)[disk_data.astype(int)])
149
+
150
+ class SemanticMask2FormerCOCOConverted(TaskMapper, NpIORepresentation):
151
+ def __init__(self, name: str, dependencies: list[Representation]):
152
+ TaskMapper.__init__(self, name=name, n_channels=8, dependencies=dependencies)
153
+ NpIORepresentation.__init__(self)
154
+ self.mapping = {
155
+ "land": ["grass-merged", "dirt-merged", "sand", "gravel", "flower", "playingfield", "snow", "platform"],
156
+ "forest": ["tree-merged"],
157
+ "residential": ["building-other-merged", "house", "roof", "fence-merged", "wall-other-merged", "wall-brick",
158
+ "rock-merged", "tent", "bridge", "bench", "window-other", "fire hydrant", "traffic light",
159
+ "umbrella", "wall-stone", "clock", "chair", "sports ball", "floor-other-merged",
160
+ "floor-wood", "stop sign", "door-stuff", "banner", "light", "net", "surfboard", "frisbee",
161
+ "rug-merged", "potted plant", "parking meter", "tennis racket", "sink", "hair drier",
162
+ "food-other-merged", "curtain", "mirror-stuff", "baseball glove", "baseball bat", "zebra",
163
+ "spoon", "towel", "donut", "apple", "handbag", "couch", "orange", "wall-wood",
164
+ "window-blind", "pizza", "cabinet-merged", "skateboard", "remote", "bottle", "bed",
165
+ "table-merged", "backpack", "bear", "wall-tile", "cup", "scissors", "ceiling-merged",
166
+ "oven", "cell phone", "microwave", "toaster", "carrot", "fork", "giraffe", "paper-merged",
167
+ "cat", "book", "sandwich", "wine glass", "pillow", "blanket", "tie", "bowl", "snowboard",
168
+ "vase", "toothbrush", "toilet", "dining table", "laptop", "tv", "cardboard", "keyboard",
169
+ "hot dog", "cake", "knife", "suitcase", "refrigerator", "fruit", "shelf", "counter", "skis",
170
+ "banana", "teddy bear", "broccoli", "mouse"],
171
+ "road": ["road", "railroad", "pavement-merged", "stairs"],
172
+ "little-objects": ["truck", "car", "boat", "horse", "person", "train", "elephant", "bus", "bird", "sheep",
173
+ "cow", "motorcycle", "dog", "bicycle", "airplane", "kite"],
174
+ "water": ["river", "water-other", "sea"],
175
+ "sky": ["sky-other-merged"],
176
+ "hill": ["mountain-merged"]
177
+ }
178
+ self.color_map = [[0, 255, 0], [0, 127, 0], [255, 255, 0], [255, 255, 255],
179
+ [255, 0, 0], [0, 0, 255], [0, 255, 255], [127, 127, 63]]
180
+ self.original_classes = dependencies[0].classes
181
+ assert set(reduce(lambda x, y: x + y, self.mapping.values(), [])) == set(self.original_classes)
182
+ self.classes = list(self.mapping.keys())
183
+ self.n_classes = len(self.classes)
184
+ self.output_dtype = "uint8"
185
+
186
+ @property
187
+ @overrides
188
+ def n_channels(self) -> int:
189
+ return self.n_classes
190
+
191
+ @overrides
192
+ def make_images(self) -> np.ndarray:
193
+ return colorize_semantic_segmentation(self.data.output.argmax(-1), self.classes, self.color_map)
194
+
195
+ @overrides
196
+ def merge_fn(self, dep_data: list[MemoryData]) -> MemoryData:
197
+ m2f_mapillary = dep_data[0].argmax(-1)
198
+ m2f_mapillary_converted = semantic_mapper(m2f_mapillary, self.mapping, self.original_classes)
199
+ res = self.disk_to_memory_fmt(m2f_mapillary_converted)
200
+ return res
201
+
202
+ @overrides
203
+ def memory_to_disk_fmt(self, memory_data: MemoryData) -> DiskData:
204
+ return memory_data.argmax(-1).astype(np.uint8)
205
+
206
+ @overrides
207
+ def disk_to_memory_fmt(self, disk_data: DiskData) -> MemoryData:
208
+ return MemoryData(np.eye(self.n_classes)[disk_data.astype(int)])
209
+
210
+ class BinaryMapper(TaskMapper, NpIORepresentation):
211
+ """
212
+ Note for future self: this is never generic enough to be in VRE -- we'll keep it in this separate code only
213
+ TaskMapper is the only high level interface that makes sense, so we should focus on keeping that generic and easy.
214
+ """
215
+ def __init__(self, name: str, dependencies: list[Representation], mapping: list[dict[str, list]],
216
+ mode: str = "all_agree", load_mode: str = "binary"):
217
+ TaskMapper.__init__(self, name=name, dependencies=dependencies, n_channels=2)
218
+ NpIORepresentation.__init__(self)
219
+ assert mode in ("all_agree", "at_least_one"), mode
220
+ assert load_mode in ("one_hot", "binary")
221
+ assert len(mapping[0]) == 2, mapping
222
+ assert len(mapping) == len(dependencies), (len(mapping), len(dependencies))
223
+ assert all(mapping[0].keys() == m.keys() for m in mapping), [m.keys() for m in mapping]
224
+ self.original_classes = [dep.classes for dep in dependencies]
225
+ self.mapping = mapping
226
+ self.mode = mode
227
+ self.load_mode = load_mode
228
+ self.classes = list(mapping[0].keys())
229
+ self.n_classes = len(self.classes)
230
+ self.color_map = [[255, 255, 255], [0, 0, 0]]
231
+ self.output_dtype = "bool"
232
+
233
+ @overrides
234
+ def make_images(self) -> np.ndarray:
235
+ x = self.data.output.argmax(-1) if self.load_mode == "one_hot" else (self.data.output > 0.5).astype(int)
236
+ x = x[..., 0] if x.shape[-1] == 1 else x
237
+ return colorize_semantic_segmentation(x, self.classes, self.color_map)
238
+
239
+ @overrides
240
+ def disk_to_memory_fmt(self, disk_data: DiskData) -> MemoryData:
241
+ assert len(disk_data.shape) == 2 and disk_data.dtype == bool, f"{self.name}: {lo(disk_data)}"
242
+ y = np.eye(2)[disk_data.astype(int)] if self.load_mode == "one_hot" else disk_data
243
+ return MemoryData(y.astype(np.float32))
244
+
245
+ @overrides
246
+ def memory_to_disk_fmt(self, memory_data: MemoryData) -> DiskData:
247
+ return memory_data.argmax(-1).astype(bool) if self.load_mode == "one_hot" else memory_data.astype(bool)
248
+
249
+ @overrides
250
+ def merge_fn(self, dep_data: list[MemoryData]) -> MemoryData:
251
+ dep_data_converted = [semantic_mapper(x.argmax(-1), mapping, oc)
252
+ for x, mapping, oc in zip(dep_data, self.mapping, self.original_classes)]
253
+ res_argmax = sum(dep_data_converted) > (0 if self.mode == "all_agree" else 1)
254
+ return self.disk_to_memory_fmt(res_argmax)
255
+
256
+ class BuildingsFromM2FDepth(BinaryMapper, NpIORepresentation):
257
+ def __init__(self, name: str, original_classes: tuple[list[str], list[str]], load_mode: str = "binary"):
258
+ buildings_mapping = [
259
+ {
260
+ "buildings": (cls := ["Building", "Utility Pole", "Pole", "Fence", "Wall"]),
261
+ "others": [x for x in mapillary_classes if x not in cls],
262
+ },
263
+ {
264
+ "buildings": (cls := ["building-other-merged", "house", "roof"]),
265
+ "others": [x for x in coco_classes if x not in cls]
266
+ }
267
+ ]
268
+
269
+ dependencies = [m2f_mapillary, m2f_coco, marigold]
270
+ TaskMapper.__init__(self, name=name, dependencies=dependencies, n_channels=2)
271
+ NpIORepresentation.__init__(self)
272
+ self.color_map = [[255, 255, 255], [0, 0, 0]]
273
+ self.original_classes = original_classes
274
+ self.mapping = buildings_mapping
275
+ self.classes = list(buildings_mapping[0].keys())
276
+ self.n_classes = len(self.classes)
277
+ self.load_mode = load_mode
278
+ self.output_dtype = "bool"
279
+
280
+ def merge_fn(self, dep_data: list[MemoryData]) -> MemoryData:
281
+ m2f_mapillary, m2f_coco = dep_data[0].argmax(-1), dep_data[1].argmax(-1)
282
+ depth = dep_data[2].squeeze()
283
+ m2f_mapillary_converted = semantic_mapper(m2f_mapillary, self.mapping[0], self.original_classes[0])
284
+ m2f_coco_converted = semantic_mapper(m2f_coco, self.mapping[1], self.original_classes[1])
285
+ thr = 0.3 # np.percentile(depth.numpy(), 0.8)
286
+ combined = (m2f_mapillary_converted + m2f_coco_converted + (depth > thr)) != 0
287
+ return self.disk_to_memory_fmt(combined)
288
+
289
+ class SafeLandingAreas(BinaryMapper, NpIORepresentation):
290
+ def __init__(self, name: str, original_classes: tuple[list[str], list[str]], include_semantics: bool = False,
291
+ sky_water: BinaryMapper | None = None, load_mode: str = "binary"):
292
+ self.include_semantics = include_semantics
293
+ dependencies = [m2f_mapillary, m2f_coco, marigold, normals_svd_marigold]
294
+ TaskMapper.__init__(self, name, dependencies=dependencies, n_channels=2)
295
+ NpIORepresentation.__init__(self)
296
+ self.color_map = [[0, 255, 0], [255, 0, 0]]
297
+ self.original_classes = original_classes
298
+ self.classes = ["safe-landing", "unsafe-landing"]
299
+ self.n_classes = len(self.classes)
300
+ self.sky_water = sky_water
301
+ self.load_mode = load_mode
302
+ self.output_dtype = "bool"
303
+
304
+ @overrides
305
+ def merge_fn(self, dep_data: list[MemoryData]) -> MemoryData:
306
+ normals, depth = dep_data[3], dep_data[2].squeeze()
307
+ v1, v2, v3 = normals.transpose(2, 0, 1)
308
+ where_safe = (v2 > 0.8) * ((v1 + v3) < 1.2)
309
+ if self.include_semantics:
310
+ sw = self.sky_water.merge_fn(dep_data)
311
+ sw = sw.argmax(-1) if self.sky_water.load_mode == "one_hot" else sw
312
+ where_safe = (where_safe * sw * (depth < 0.9)).astype(bool)
313
+ return self.disk_to_memory_fmt(~where_safe)
314
+
315
+ def get_new_semantic_mapped_tasks(tasks_subset: list[str] | None = None) -> dict[str, TaskMapper]:
316
+ """The exported function for VRE!"""
317
+ buildings_mapping = [
318
+ {
319
+ "buildings": (cls := ["Building", "Utility Pole", "Pole", "Fence", "Wall"]),
320
+ "others": [x for x in mapillary_classes if x not in cls],
321
+ },
322
+ {
323
+ "buildings": (cls := ["building-other-merged", "house", "roof"]),
324
+ "others": [x for x in coco_classes if x not in cls]
325
+ }
326
+ ]
327
+
328
+ living_mapping = [
329
+ {
330
+ "living": (cls := ["Person", "Bicyclist", "Motorcyclist", "Other Rider", "Bird", "Ground Animal"]),
331
+ "others": [c for c in mapillary_classes if c not in cls],
332
+ },
333
+ {
334
+ "living": (cls := ["person", "bird", "cat", "dog", "horse", "sheep", "cow",
335
+ "elephant", "bear", "zebra", "giraffe"]),
336
+ "others": [c for c in coco_classes if c not in cls],
337
+ }
338
+ ]
339
+
340
+ sky_and_water_mapping = [
341
+ {
342
+ "sky-and-water": (cls := ["Sky", "Water"]),
343
+ "others": [c for c in mapillary_classes if c not in cls],
344
+ },
345
+ {
346
+ "sky-and-water": (cls := ["sky-other-merged", "water-other"]),
347
+ "others": [c for c in coco_classes if c not in cls],
348
+ },
349
+ ]
350
+
351
+ transportation_mapping = [
352
+ {
353
+ "transportation": (cls := ["Bike Lane", "Crosswalk - Plain", "Curb Cut", "Parking", "Rail Track",
354
+ "Road", "Service Lane", "Sidewalk", "Bridge", "Tunnel", "Bicyclist",
355
+ "Motorcyclist",
356
+ "Other Rider", "Lane Marking - Crosswalk", "Lane Marking - General",
357
+ "Traffic Light",
358
+ "Traffic Sign (Back)", "Traffic Sign (Front)", "Bicycle", "Boat", "Bus", "Car",
359
+ "Caravan", "Motorcycle", "On Rails", "Other Vehicle", "Trailer", "Truck",
360
+ "Wheeled Slow", "Car Mount", "Ego Vehicle"]),
361
+ "others": [c for c in mapillary_classes if c not in cls]
362
+ },
363
+ {
364
+ "transportation": (cls := ["bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat"]),
365
+ "others": [c for c in coco_classes if c not in cls]
366
+ }
367
+ ]
368
+
369
+ containing_mapping = [
370
+ {
371
+ "containing": (cls := [
372
+ "Terrain", "Sand", "Mountain", "Road", "Sidewalk", "Pedestrian Area", "Rail Track", "Parking",
373
+ "Service Lane", "Bridge", "Water", "Vegetation", "Curb", "Fence", "Wall", "Guard Rail",
374
+ "Barrier", "Curb Cut", "Snow"
375
+ ]),
376
+ "contained": [c for c in mapillary_classes if c not in cls], # Buildings and constructions will be here
377
+ },
378
+ {
379
+ "containing": (cls := [
380
+ "floor-wood", "floor-other-merged", "pavement-merged", "mountain-merged", "sand", "road",
381
+ "sea", "river", "railroad", "platform", "grass-merged", "snow", "stairs", "tent"
382
+ ]),
383
+ "contained": [c for c in coco_classes if c not in cls], # Buildings and constructions will be here
384
+ }
385
+ ]
386
+
387
+ vegetation_mapping = [
388
+ {
389
+ "vegetation": (cls := ["Mountain", "Sand", "Sky", "Snow", "Terrain", "Vegetation"]),
390
+ "others": [x for x in mapillary_classes if x not in cls],
391
+ },
392
+ {
393
+ "vegetation": (cls := ["tree-merged", "grass-merged", "dirt-merged", "flower", "potted plant", "river",
394
+ "sea", "water-other", "mountain-merged", "rock-merged"]),
395
+ "others": [x for x in coco_classes if x not in cls],
396
+ }
397
+ ]
398
+
399
+ available_tasks: list[TaskMapper] = [
400
+ SemanticMask2FormerMapillaryConvertedPaper("semantic_mask2former_swin_mapillary_converted", [m2f_mapillary]),
401
+ SemanticMask2FormerMapillaryConvertedPaper("semantic_mask2former_r50_mapillary_converted", [m2f_r50_mapillary]),
402
+ SemanticMask2FormerCOCOConverted("semantic_mask2former_swin_coco_converted", [m2f_coco]),
403
+ BinaryMapper("buildings", [m2f_mapillary, m2f_coco], buildings_mapping),
404
+ BinaryMapper("living-vs-non-living", [m2f_mapillary, m2f_coco], living_mapping),
405
+ sky_water := BinaryMapper("sky-and-water", [m2f_mapillary, m2f_coco], sky_and_water_mapping,
406
+ mode="at_least_one"),
407
+ BinaryMapper("transportation", [m2f_mapillary, m2f_coco], transportation_mapping, mode="at_least_one"),
408
+ BinaryMapper("containing", [m2f_mapillary, m2f_coco], containing_mapping),
409
+ BinaryMapper("vegetation", [m2f_mapillary, m2f_coco], vegetation_mapping),
410
+ BuildingsFromM2FDepth("buildings(nearby)", [mapillary_classes, coco_classes]),
411
+ SafeLandingAreas("safe-landing-no-sseg", [mapillary_classes, coco_classes]),
412
+ SafeLandingAreas("safe-landing-semantics", [mapillary_classes, coco_classes],
413
+ include_semantics=True, sky_water=sky_water),
414
+ ]
415
+ if tasks_subset is None:
416
+ return {t.name: t for t in available_tasks}
417
+ return {t.name: t for t in available_tasks if t.name in tasks_subset}
418
+
419
+ if __name__ == "__main__":
420
+ cfg_path = Path.cwd() / "cfg.yaml"
421
+ data_path = Path.cwd() / "data"
422
+ vre_dir = data_path
423
+
424
+ task_names = ["rgb", "depth_marigold", "normals_svd(depth_marigold)", "opticalflow_rife",
425
+ "semantic_mask2former_coco_47429163_0", "semantic_mask2former_mapillary_49189528_0"]
426
+ order = ["rgb", "semantic_mask2former_mapillary_49189528_0", "semantic_mask2former_coco_47429163_0",
427
+ "depth_marigold", "normals_svd(depth_marigold)"]
428
+
429
+ representations = build_representations_from_cfg(cfg_path)
430
+ reader = MultiTaskDataset(vre_dir, task_names=task_names,
431
+ task_types=representations, handle_missing_data="fill_nan",
432
+ normalization="min_max", cache_task_stats=True, batch_size_stats=100)
433
+ orig_task_names = list(reader.task_types.keys())
434
+
435
+ new_tasks = get_new_semantic_mapped_tasks()
436
+ for task_name in reader.task_names:
437
+ if task_name not in orig_task_names:
438
+ reader.remove_task(task_name)
439
+ for new_task in new_tasks.values():
440
+ reader.add_task(new_task, overwrite=True)
441
+
442
+ print("== Random loaded item ==")
443
+ ixs = np.random.permutation(range(len(reader))).tolist()
444
+ for ix in ixs:
445
+ data, name = reader[ix]
446
+ pprint(data)
447
+ print(plot_one(data, title=name, order=order, name_to_task=reader.name_to_task).shape)
448
+ break
vre_dronescapes/cfg.yaml CHANGED
@@ -42,6 +42,15 @@ representations:
42
  compute_parameters:
43
  batch_size: 1
44
 
 
 
 
 
 
 
 
 
 
45
  depth_marigold:
46
  type: depth/marigold
47
  dependencies: []
 
42
  compute_parameters:
43
  batch_size: 1
44
 
45
+ semantic_mask2former_mapillary_49189528_1:
46
+ type: semantic-segmentation/mask2former
47
+ dependencies: []
48
+ parameters:
49
+ model_id: "49189528_1"
50
+ semantic_argmax_only: True
51
+ compute_parameters:
52
+ batch_size: 1
53
+
54
  depth_marigold:
55
  type: depth/marigold
56
  dependencies: []