import sys from vre.readers import MultiTaskDataset from vre.representations import build_representations_from_cfg, Representation from vre.representations.cv_representations import SemanticRepresentation from vre.logger import vre_logger as logger import matplotlib.pyplot as plt import numpy as np import pandas as pd import io import base64 import bs4 from PIL import Image import seaborn as sns def extract_pil_from_b64_image(base64_buf: str) -> Image: return Image.open(io.BytesIO(base64.b64decode(base64_buf))) def extract_b64_image_from_fig(fig: plt.Figure) -> str: buffer = io.BytesIO() fig.savefig(buffer, format="png", dpi=fig.dpi) buffer.seek(0) base64_buf = base64.b64encode(buffer.getvalue()).decode("utf-8") return base64_buf def extract_b64_imgsrc_from_fig(fig: plt.Figure) -> str: base64_buf = extract_b64_image_from_fig(fig) return f"""Sample Plot""" def save_html(html_imgs: list[str], description: str, out_path: str): html = bs4.BeautifulSoup(f""" VRE Dataset Analysis

Description

Plots

""", features="lxml") html.find(id="description").insert_after(bs4.BeautifulSoup(description.replace("\n", "
"), features="lxml")) for html_img in html_imgs[::-1]: html.find(id="plots").insert_after(bs4.BeautifulSoup(html_img, features="lxml")) open(out_path, "w").write(str(html)) print(f"Written html at '{out_path}'") def histogram_from_classification_task(reader: MultiTaskDataset, classif: SemanticRepresentation, n: int | None = None, mode: str = "sequential", **figkwargs) -> plt.Figure: fig = plt.Figure(**figkwargs) counts = np.zeros(len(classif.classes), dtype=np.uint64) ixs = np.arange(len(reader)) if mode == "sequential" else np.random.permutation(len(reader)) ixs = ixs[0:n] if n is not None and n < len(reader) else ixs assert getattr(classif, "load_mode", "binary") == "binary", classif.load_mode for i in ixs: item = reader.get_one_item(i.item(), subset_tasks=[classif.name]) data_cnts = item[0][classif.name].unique(return_counts=True) item_classes, item_counts = data_cnts[0].numpy().astype(int), data_cnts[1].numpy().astype(int) counts[item_classes] = counts[item_classes] + item_counts df = pd.DataFrame({"Labels": classif.classes, "Values": counts}) df["Values"] = df["Values"] / df["Values"].sum() df = df.sort_values("Values", ascending=True) df = df[df["Values"] > 0.005] ax = fig.gca() sns.barplot(data=df, y="Labels", x="Values", palette="viridis", legend=True, ax=ax, width=1) # Adjust y-axis tick positions and spacing ax.set_title(classif.name, fontsize=14, fontweight='bold') ax.set_ylabel("Labels", fontsize=12) fig.set_size_inches(8, 2 if len(df) <= 2 else len(df) * 0.5) fig.gca().set_xlim(0, 1) fig.tight_layout() plt.close() return fig def gaussian_from_statistics(reader: MultiTaskDataset, regression_task: Representation) -> plt.Figure: _, __, mean, std = [x.numpy() for x in reader.statistics[regression_task.name]] fig, ax = plt.subplots(1, n_ch := mean.shape[0], figsize=(10, 5)) ax = [ax] if n_ch == 1 else ax x = np.linspace(mean - 4*std, mean + 4*std, 1000) y = (1 / (std * np.sqrt(2 * np.pi))) * np.exp(-0.5 * ((x - mean) / std) ** 2) for i in range(n_ch): ax[i].plot(x[:, i], y[:, i]) fig.suptitle(regression_task.name) return fig if __name__ == "__main__": data_path = sys.argv[1] cfg_path = sys.argv[2] representations = build_representations_from_cfg(cfg_path) print(representations) reader = MultiTaskDataset(data_path, task_names=list(representations), task_types=representations, normalization="min_max") print(reader) imgsrcs = [] for classif_task in reader.classification_tasks: fig = histogram_from_classification_task(reader, classif_task) imgsrcs.append(extract_b64_imgsrc_from_fig(fig)) regression_tasks = [t for t in reader.tasks if t not in reader.classification_tasks] for regression_task in regression_tasks: fig = gaussian_from_statistics(reader, regression_task) imgsrcs.append(extract_b64_imgsrc_from_fig(fig)) save_html(imgsrcs, str(reader), "plot.html")