File size: 8,445 Bytes
cbb2b8a
 
 
 
61740cb
cbb2b8a
d566054
 
61740cb
 
 
 
 
 
 
 
d566054
 
 
cbb2b8a
 
 
61740cb
cbb2b8a
 
61740cb
 
 
cbb2b8a
61740cb
cbb2b8a
61740cb
cbb2b8a
 
 
 
 
 
 
 
61740cb
cbb2b8a
 
 
 
 
 
61740cb
 
 
 
cbb2b8a
 
 
 
 
 
 
61740cb
cbb2b8a
61740cb
 
cbb2b8a
 
 
 
 
 
 
 
 
 
 
 
 
61740cb
 
 
 
 
 
 
 
 
 
cbb2b8a
 
 
 
 
 
 
61740cb
cbb2b8a
 
 
 
 
 
61740cb
cbb2b8a
 
 
61740cb
 
 
 
 
 
 
 
 
cbb2b8a
 
 
 
 
 
 
 
 
61740cb
 
cbb2b8a
 
61740cb
cbb2b8a
 
d566054
 
 
 
 
 
 
cbb2b8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "ename": "ImportError",
     "evalue": "cannot import name 'DepthRepresentation' from 'dronescapes_reader' (/scratch/sdc/datasets/dronescapes/dronescapes_reader/__init__.py)",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mImportError\u001b[0m                               Traceback (most recent call last)",
      "Cell \u001b[0;32mIn [4], line 7\u001b[0m\n\u001b[1;32m      5\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mrandom\u001b[39;00m\n\u001b[1;32m      6\u001b[0m sys\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39mappend(Path\u001b[38;5;241m.\u001b[39mcwd()\u001b[38;5;241m.\u001b[39mparent\u001b[38;5;241m.\u001b[39m\u001b[38;5;21m__str__\u001b[39m())\n\u001b[0;32m----> 7\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mdronescapes_reader\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m MultiTaskDataset, DepthRepresentation, OpticalFlowRepresentation, SemanticRepresentation\n\u001b[1;32m      8\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mutils\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mdata\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m DataLoader\n\u001b[1;32m      9\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mnumpy\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mnp\u001b[39;00m\n",
      "\u001b[0;31mImportError\u001b[0m: cannot import name 'DepthRepresentation' from 'dronescapes_reader' (/scratch/sdc/datasets/dronescapes/dronescapes_reader/__init__.py)"
     ]
    }
   ],
   "source": [
    "import sys\n",
    "from pathlib import Path\n",
    "from functools import partial\n",
    "from pprint import pprint\n",
    "import random\n",
    "sys.path.append(Path.cwd().parent.__str__())\n",
    "from dronescapes_reader import MultiTaskDataset, DepthRepresentation, OpticalFlowRepresentation, SemanticRepresentation\n",
    "from torch.utils.data import DataLoader\n",
    "import numpy as np\n",
    "import torch as tr\n",
    "from media_processing_lib.collage_maker import collage_fn\n",
    "from media_processing_lib.image import image_add_title\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "%load_ext autoreload\n",
    "%autoreload 2"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\u001b[32m[24-05-13 14:30:43 DEBUG]\u001b[0m Building dataset from: '/scratch/sdc/datasets/dronescapes/scripts/../data/train_set' (multitask_dataset.py:186)\n",
      "\u001b[32m[24-05-13 14:30:44 INFO]\u001b[0m Found 11664 data points as union of all nodes' data (8 nodes). (multitask_dataset.py:174)\n",
      "\u001b[32m[24-05-13 14:30:44 DEBUG]\u001b[0m No explicit tasks provided. Using all of them as read from the paths (8). (multitask_dataset.py:86)\n",
      "\u001b[32m[24-05-13 14:30:44 INFO]\u001b[0m Tasks used in this dataset: ['depth_dpt', 'depth_sfm_manual202204', 'edges_dexined', 'normals_sfm_manual202204', 'opticalflow_rife', 'rgb', 'semantic_mask2former_swin_mapillary_converted', 'semantic_segprop8'] (multitask_dataset.py:93)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[MultiTaskDataset]\n",
      " - Path: '/scratch/sdc/datasets/dronescapes/scripts/../data/train_set'\n",
      " - Only full data: False\n",
      " - Representations (8): [DepthRepresentation(depth_dpt), DepthRepresentation(depth_sfm_manual202204), NpzRepresentation(edges_dexined), NpzRepresentation(normals_sfm_manual202204), OpticalFlowRepresentation(opticalflow_rife), NpzRepresentation(rgb), SemanticRepresentation(semantic_mask2former_swin_mapillary_converted), SemanticRepresentation(semantic_segprop8)]\n",
      " - Length: 11664\n",
      "== Shapes ==\n",
      "{'depth_dpt': torch.Size([540, 960]),\n",
      " 'depth_sfm_manual202204': torch.Size([540, 960]),\n",
      " 'edges_dexined': torch.Size([540, 960]),\n",
      " 'normals_sfm_manual202204': torch.Size([540, 960, 3]),\n",
      " 'opticalflow_rife': torch.Size([540, 960, 2]),\n",
      " 'rgb': torch.Size([540, 960, 3]),\n",
      " 'semantic_mask2former_swin_mapillary_converted': torch.Size([540, 960]),\n",
      " 'semantic_segprop8': torch.Size([540, 960])}\n"
     ]
    }
   ],
   "source": [
    "sema_repr = partial(SemanticRepresentation, classes=8, color_map=[[0, 255, 0], [0, 127, 0], [255, 255, 0],\n",
    "                                                                  [255, 255, 255], [255, 0, 0], [0, 0, 255],\n",
    "                                                                  [0, 255, 255], [127, 127, 63]])\n",
    "reader = MultiTaskDataset(\"../data/train_set\", handle_missing_data=\"fill_none\",\n",
    "                          task_types={\"depth_dpt\": DepthRepresentation(\"depth_dpt\", min_depth=0, max_depth=0.999),\n",
    "                                      \"depth_sfm_manual202204\": DepthRepresentation(\"depth_sfm_manual202204\",\n",
    "                                                                                    min_depth=0, max_depth=300),\n",
    "                                      \"opticalflow_rife\": OpticalFlowRepresentation,\n",
    "                                      \"semantic_segprop8\": sema_repr,\n",
    "                                      \"semantic_mask2former_swin_mapillary_converted\": sema_repr})\n",
    "print(reader)\n",
    "print(\"== Shapes ==\")\n",
    "pprint(reader.data_shape)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "== Random loaded item ==\n"
     ]
    },
    {
     "ename": "NameError",
     "evalue": "name 'reader' is not defined",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mNameError\u001b[0m                                 Traceback (most recent call last)",
      "Cell \u001b[0;32mIn [2], line 2\u001b[0m\n\u001b[1;32m      1\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m== Random loaded item ==\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m----> 2\u001b[0m rand_ix \u001b[38;5;241m=\u001b[39m random\u001b[38;5;241m.\u001b[39mrandint(\u001b[38;5;241m0\u001b[39m, \u001b[38;5;28mlen\u001b[39m(\u001b[43mreader\u001b[49m))\n\u001b[1;32m      3\u001b[0m data, name, repr_names \u001b[38;5;241m=\u001b[39m reader[rand_ix] \u001b[38;5;66;03m# get a random item\u001b[39;00m\n\u001b[1;32m      4\u001b[0m img_data \u001b[38;5;241m=\u001b[39m {}\n",
      "\u001b[0;31mNameError\u001b[0m: name 'reader' is not defined"
     ]
    }
   ],
   "source": [
    "print(\"== Random loaded item ==\")\n",
    "rand_ix = random.randint(0, len(reader))\n",
    "data, name, repr_names = reader[rand_ix] # get a random item\n",
    "img_data = {}\n",
    "for k, v in data.items():\n",
    "    img_data[k] = reader.name_to_task[k].plot_fn(v) if v is not None else np.zeros((*reader.data_shape[k][0:2], 3))\n",
    "if \"rgb\" in img_data: # move rgb as 1st item in the collage\n",
    "    img_data = {\"rgb\": img_data[\"rgb\"], **{k: v for k, v in img_data.items() if k != \"rgb\"}}\n",
    "pprint({k: v.shape for k, v in img_data.items()})\n",
    "collage = collage_fn(list(img_data.values()), titles=img_data.keys(), size_px=55)\n",
    "collage = image_add_title(collage, name, size_px=55, top_padding=110)\n",
    "plt.imshow(collage)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "ngc",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}