File size: 10,144 Bytes
8573cde
 
 
d05f7e1
8573cde
 
 
 
 
92142d8
 
 
 
c7e4671
 
c853138
 
 
92142d8
 
a3c6a05
 
 
 
 
c853138
92142d8
 
 
 
c7e4671
 
9dd6738
92142d8
9dd6738
92142d8
9dd6738
 
bd7fb05
c7e4671
 
bd7fb05
 
92142d8
a3c6a05
92142d8
 
69c544e
 
 
92142d8
69c544e
bd7fb05
 
69c544e
bd7fb05
69c544e
 
 
bd7fb05
69c544e
bd7fb05
69c544e
 
 
bd7fb05
 
 
69c544e
bd7fb05
 
 
 
 
 
 
 
 
 
 
69c544e
bd7fb05
 
 
 
 
 
 
 
 
 
 
69c544e
bd7fb05
 
 
 
 
 
 
 
 
 
 
92142d8
2351499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dd6738
 
 
2351499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dd6738
2351499
 
 
 
 
 
 
 
 
304b1ab
 
 
 
 
 
2351499
 
 
92142d8
2351499
 
6cd0c61
2351499
 
cbb2b8a
6cd0c61
 
 
 
 
6cb057a
 
 
 
 
 
613c884
6cd0c61
 
 
 
 
c6f77f9
 
8573cde
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
---
tags:
- videos
- video
- uav
- drones
- multitask
- multimodal
---
# Dronescapes dataset

As introduced in our ICCV 2023 workshop paper: [link](https://openaccess.thecvf.com/content/ICCV2023W/LIMIT/papers/Marcu_Self-Supervised_Hypergraphs_for_Learning_Multiple_World_Interpretations_ICCVW_2023_paper.pdf)

![Logo](logo.png)

Note: We are extending this dataset in another repository. GT data for benchmarking is the same, but we are generating 
modalities as inputs: [dronescapes-2024](https://huggingface.co/datasets/Meehai/dronescapes-2024).

# 1. Downloading the data

```
git lfs install # Make sure you have git-lfs installed (https://git-lfs.com)
git clone https://huggingface.co/datasets/Meehai/dronescapes
```

Note: the dataset has about 200GB, so it may take a while to clone it.

## 2. Using the data

As per the split from the paper:

<summary> Split </summary>
<img src="split.png" width="500px">

The data is in the `data*` directory with 1 sub-directory for each split above (and a few more variants).

The simplest way to explore the data is to use the [provided notebook](scripts/dronescapes_viewer.ipynb). Upon running
it, you should get a collage with all the default tasks, like this:

![Collage](collage.png)

For a CLI-only method, you can use the provided reader as well:

```
python scripts/dronescapes_viewer.py data/test_set_annotated_only/ # or any of the 8 directories in data/
```

<details>
<summary> Expected output </summary>

```
[MultiTaskDataset]
 - Path: '/export/home/proiecte/aux/mihai_cristian.pirvu/datasets/dronescapes/data/test_set_annotated_only'
 - Tasks (11): [DepthRepresentation(depth_dpt), DepthRepresentation(depth_sfm_manual202204), DepthRepresentation(depth_ufo), ColorRepresentation(edges_dexined), EdgesRepresentation(edges_gb), NpzRepresentation(normals_sfm_manual202204), OpticalFlowRepresentation(opticalflow_rife), ColorRepresentation(rgb), SemanticRepresentation(semantic_mask2former_swin_mapillary_converted), SemanticRepresentation(semantic_segprop8), ColorRepresentation(softseg_gb)]
 - Length: 116
 - Handle missing data mode: 'fill_none'
== Shapes ==
{'depth_dpt': torch.Size([540, 960]),
 'depth_sfm_manual202204': torch.Size([540, 960]),
 'depth_ufo': torch.Size([540, 960, 1]),
 'edges_dexined': torch.Size([540, 960]),
 'edges_gb': torch.Size([540, 960, 1]),
 'normals_sfm_manual202204': torch.Size([540, 960, 3]),
 'opticalflow_rife': torch.Size([540, 960, 2]),
 'rgb': torch.Size([540, 960, 3]),
 'semantic_mask2former_swin_mapillary_converted': torch.Size([540, 960, 8]),
 'semantic_segprop8': torch.Size([540, 960, 8]),
 'softseg_gb': torch.Size([540, 960, 3])}
== Random loaded item ==
{'depth_dpt': tensor[540, 960] n=518400 (2.0Mb) x∈[0.043, 1.000] μ=0.341 σ=0.418,
 'depth_sfm_manual202204': None,
 'depth_ufo': tensor[540, 960, 1] n=518400 (2.0Mb) x∈[0.115, 0.588] μ=0.297 σ=0.138,
 'edges_dexined': tensor[540, 960] n=518400 (2.0Mb) x∈[0.000, 0.004] μ=0.003 σ=0.001,
 'edges_gb': tensor[540, 960, 1] n=518400 (2.0Mb) x∈[0., 1.000] μ=0.063 σ=0.100,
 'normals_sfm_manual202204': None,
 'opticalflow_rife': tensor[540, 960, 2] n=1036800 (4.0Mb) x∈[-0.004, 0.005] μ=0.000 σ=0.000,
 'rgb': tensor[540, 960, 3] n=1555200 (5.9Mb) x∈[0., 1.000] μ=0.392 σ=0.238,
 'semantic_mask2former_swin_mapillary_converted': tensor[540, 960, 8] n=4147200 (16Mb) x∈[0., 1.000] μ=0.125 σ=0.331,
 'semantic_segprop8': tensor[540, 960, 8] n=4147200 (16Mb) x∈[0., 1.000] μ=0.125 σ=0.331,
 'softseg_gb': tensor[540, 960, 3] n=1555200 (5.9Mb) x∈[0., 0.004] μ=0.002 σ=0.001}
== Random loaded batch ==
{'depth_dpt': tensor[5, 540, 960] n=2592000 (9.9Mb) x∈[0.043, 1.000] μ=0.340 σ=0.417,
 'depth_sfm_manual202204': tensor[5, 540, 960] n=2592000 (9.9Mb) NaN!,
 'depth_ufo': tensor[5, 540, 960, 1] n=2592000 (9.9Mb) x∈[0.115, 0.588] μ=0.296 σ=0.137,
 'edges_dexined': tensor[5, 540, 960] n=2592000 (9.9Mb) x∈[0.000, 0.004] μ=0.003 σ=0.001,
 'edges_gb': tensor[5, 540, 960, 1] n=2592000 (9.9Mb) x∈[0., 1.000] μ=0.063 σ=0.102,
 'normals_sfm_manual202204': tensor[5, 540, 960, 3] n=7776000 (30Mb) NaN!,
 'opticalflow_rife': tensor[5, 540, 960, 2] n=5184000 (20Mb) x∈[-0.004, 0.006] μ=0.000 σ=0.000,
 'rgb': tensor[5, 540, 960, 3] n=7776000 (30Mb) x∈[0., 1.000] μ=0.393 σ=0.238,
 'semantic_mask2former_swin_mapillary_converted': tensor[5, 540, 960, 8] n=20736000 (79Mb) x∈[0., 1.000] μ=0.125 σ=0.331,
 'semantic_segprop8': tensor[5, 540, 960, 8] n=20736000 (79Mb) x∈[0., 1.000] μ=0.125 σ=0.331,
 'softseg_gb': tensor[5, 540, 960, 3] n=7776000 (30Mb) x∈[0., 0.004] μ=0.002 σ=0.001}
== Random loaded batch using torch DataLoader ==
{'depth_dpt': tensor[5, 540, 960] n=2592000 (9.9Mb) x∈[0.025, 1.000] μ=0.216 σ=0.343,
 'depth_sfm_manual202204': tensor[5, 540, 960] n=2592000 (9.9Mb) x∈[0., 1.000] μ=0.562 σ=0.335 NaN!,
 'depth_ufo': tensor[5, 540, 960, 1] n=2592000 (9.9Mb) x∈[0.100, 0.580] μ=0.290 σ=0.128,
 'edges_dexined': tensor[5, 540, 960] n=2592000 (9.9Mb) x∈[0.000, 0.004] μ=0.003 σ=0.001,
 'edges_gb': tensor[5, 540, 960, 1] n=2592000 (9.9Mb) x∈[0., 1.000] μ=0.079 σ=0.116,
 'normals_sfm_manual202204': tensor[5, 540, 960, 3] n=7776000 (30Mb) x∈[0.000, 1.000] μ=0.552 σ=0.253 NaN!,
 'opticalflow_rife': tensor[5, 540, 960, 2] n=5184000 (20Mb) x∈[-0.013, 0.016] μ=0.000 σ=0.004,
 'rgb': tensor[5, 540, 960, 3] n=7776000 (30Mb) x∈[0., 1.000] μ=0.338 σ=0.237,
 'semantic_mask2former_swin_mapillary_converted': tensor[5, 540, 960, 8] n=20736000 (79Mb) x∈[0., 1.000] μ=0.125 σ=0.331,
 'semantic_segprop8': tensor[5, 540, 960, 8] n=20736000 (79Mb) x∈[0., 1.000] μ=0.125 σ=0.331,
 'softseg_gb': tensor[5, 540, 960, 3] n=7776000 (30Mb) x∈[0., 0.004] μ=0.002 σ=0.001}
```
</details>

## 3. Evaluation for semantic segmentation

We evaluate in the paper on the 3 test scenes (unsees at train) as well as the semi-supervised scenes (seen, but
different split) against the human annotated frames. The general evaluation script is in
`scripts/evaluate_semantic_segmentation.py`.

General usage is:
```
python scripts/evaluate_semantic_segmentation.py y_dir gt_dir -o results.csv --classes C1 C2 .. Cn
[--class_weights W1 W2 ... Wn] [--scenes s1 s2 ... sm]
```

<details>
<summary> Script explanation </summary>
The script is a bit convoluted, so let's break it into parts:

- `y_dir` and `gt_dir` Two directories of .npz files in the same format as the dataset
  - y_dir/1.npz, ..., y_dir/N.npz
  - gt_dir/1.npz, ..., gt_dir.npz
- `classes` A list of classes in the order that they appear in the predictions and gt files
- `class_weights` (optional, but used in paper) How much to weigh each class. In the paper we compute these weights as
the number of pixels in all the dataset (train/val/semisup/test) for each of the 8 classes resulting in the numbers
below.
- `scenes` if the `y_dir` and `gt_dir` contains multiple scenes that you want to evaluate separately, the script allows
you to pass the prefix of all the scenes. For example, in `data/test_set_annotated_only/semantic_segprop8/` there are
actually 3 scenes in the npz files and in the paper, we evaluate each scene independently. Even though the script
outputs one csv file with predictions for each npz file, the scenes are used for proper aggregation at scene level.
</details>

<details>
<summary> Reproducing paper results for Mask2Former </summary>

```
python scripts/evaluate_semantic_segmentation.py \
  data/test_set_annotated_only/semantic_mask2former_swin_mapillary_converted/ \ # Mask2Former example, use yours here!
  data/test_set_annotated_only/semantic_segprop8/ \
  -o results.csv \
  --classes land forest residential road little-objects water sky hill \
  --class_weights 0.28172092 0.30589653 0.13341699 0.05937348 0.00474491 0.05987466 0.08660721 0.06836531 \
  --scenes barsana_DJI_0500_0501_combined_sliced_2700_14700 comana_DJI_0881_full norway_210821_DJI_0015_full
```

Should output:
```
scene                                             iou      f1                                                           
barsana_DJI_0500_0501_combined_sliced_2700_14700  63.371  75.338
comana_DJI_0881_full                              60.559  73.779
norway_210821_DJI_0015_full                       37.986  45.939
mean                                              53.972  65.019

```

Not providing `--scenes` will make an average across all 3 scenes (not average after each metric individually):

```
          iou      f1
scene
all    60.456  73.261
```
</details>

### 3.1 Official benchmark

#### IoU

| method | #paramters |  average | barsana_DJI_0500_0501_combined_sliced_2700_14700 | comana_DJI_0881_full |  norway_210821_DJI_0015_full |
|:-|:-|:-|:-|:-|:-|
| [Mask2Former](https://openaccess.thecvf.com/content/CVPR2022/papers/Cheng_Masked-Attention_Mask_Transformer_for_Universal_Image_Segmentation_CVPR_2022_paper.pdf) | 216M | 53.97 | 63.37 | 60.55 | 37.98 |
| [NGC(LR)](https://openaccess.thecvf.com/content/ICCV2023W/LIMIT/papers/Marcu_Self-Supervised_Hypergraphs_for_Learning_Multiple_World_Interpretations_ICCVW_2023_paper.pdf) | 32M | 40.75  | 46.51 | 45.59 | 30.17 |
| [CShift](https://www.bmvc2021-virtualconference.com/assets/papers/0455.pdf)[^1] | n/a | 39.67 | 46.27 | 43.67 | 29.09 |
| [NGC](https://cdn.aaai.org/ojs/16283/16283-13-19777-1-2-20210518.pdf)[^1] | 32M | 35.32 | 44.34 | 38.99 | 22.63 |
| [SafeUAV](https://openaccess.thecvf.com/content_ECCVW_2018/papers/11130/Marcu_SafeUAV_Learning_to_estimate_depth_and_safe_landing_areas_for_ECCVW_2018_paper.pdf)[^1] | 1.1M | 32.79 | n/a | n/a | n/a |

[^1]: reported in the [Dronescapes paper](https://openaccess.thecvf.com/content/ICCV2023W/LIMIT/papers/Marcu_Self-Supervised_Hypergraphs_for_Learning_Multiple_World_Interpretations_ICCVW_2023_paper.pdf).

#### F1 Score

| method | #paramters |  average | barsana_DJI_0500_0501_combined_sliced_2700_14700 | comana_DJI_0881_full |  norway_210821_DJI_0015_full |
|:-|:-|:-|:-|:-|:-|
| [Mask2Former](https://openaccess.thecvf.com/content/CVPR2022/papers/Cheng_Masked-Attention_Mask_Transformer_for_Universal_Image_Segmentation_CVPR_2022_paper.pdf) | 216M | 65.01 | 75.33 | 73.77 | 45.93 |