|
|
|
"""MultiTask Dataset module compatible with torch.utils.data.Dataset & DataLoader.""" |
|
from __future__ import annotations |
|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple, Iterable |
|
from argparse import ArgumentParser |
|
from pprint import pprint |
|
from natsort import natsorted |
|
from loggez import loggez_logger as logger |
|
import torch as tr |
|
import numpy as np |
|
from torch.utils.data import Dataset, DataLoader |
|
from lovely_tensors import monkey_patch |
|
from tqdm import trange |
|
|
|
try: |
|
from npz_representation import NpzRepresentation |
|
except ImportError: |
|
from .npz_representation import NpzRepresentation |
|
|
|
monkey_patch() |
|
BuildDatasetTuple = Tuple[Dict[str, List[Path]], List[str]] |
|
MultiTaskItem = Tuple[Dict[str, tr.Tensor], str, List[str]] |
|
TaskStatistics = Tuple[tr.Tensor, tr.Tensor, tr.Tensor, tr.Tensor] |
|
|
|
class MultiTaskDataset(Dataset): |
|
""" |
|
MultiTaskDataset implementation. Reads data from npz files and returns them as a dict. |
|
Parameters: |
|
- path: Path to the directory containing the npz files. |
|
- task_names: List of tasks that are present in the dataset. If set to None, will infer from the files on disk. |
|
- task_types: A dictionary of form {task_name: task_type} for the reader to call to read from disk, plot etc. |
|
- normalization: The normalization type used in __getitem__. Valid options are: |
|
- None: Reads the data as-is using task.read_from_disk(path) |
|
- 'min_max': Calls task.normalize(task.read_from_disk(path), mins[task], maxs[task]) |
|
- 'standardization': Calls task.standardize(task.read_from_disk(path), means[task], stds[task]) |
|
If normalization is not 'none', then task-level statistics will be computed. Environmental variable |
|
STATS_PBAR=0/1 enables tqdm during statistics computation. |
|
- handle_missing_data: Modes to handle missing data. Valid options are: |
|
- 'drop': Drop the data point if any of the representations is missing. |
|
- 'fill_{none,zero,nan}': Fill the missing data with Nones, zeros or NaNs. |
|
- files_suffix: What suffix to look for when creating the dataset. Valid values: 'npy' or 'npz'. |
|
- cache_task_stats: If set to True, the statistics will be cached at '{path}/.task_statistics.npz'. Can be enabled |
|
using the environmental variable STATS_CACHE=1. Defaults to False. |
|
- batch_size_stats: Controls the batch size during statistics computation. Can be enabled by environmental variable |
|
STATS_BATCH_SIZE. Defaults to 1. |
|
|
|
Expected directory structure: |
|
path/ |
|
- task_1/0.npz, ..., N.npz |
|
- ... |
|
- task_n/0.npz, ..., N.npz |
|
|
|
Names can be in a different format (i.e. 2022-01-01.npz), but must be consistent and equal across all tasks. |
|
""" |
|
|
|
def __init__(self, path: Path, |
|
task_names: list[str], |
|
task_types: dict[str, type], |
|
normalization: str | None | dict[str], |
|
handle_missing_data: str = "fill_none", |
|
files_suffix: str = "npz", |
|
cache_task_stats: bool = (os.getenv("STATS_CACHE", "0") == "1"), |
|
batch_size_stats: int = int(os.getenv("STATS_BATCH_SIZE", "1")), |
|
statistics: dict[str, TaskStatistics] | None = None, |
|
): |
|
assert Path(path).exists(), f"Provided path '{path}' doesn't exist!" |
|
assert handle_missing_data in ("drop", "fill_none", "fill_zero", "fill_nan"), \ |
|
f"Invalid handle_missing_data mode: {handle_missing_data}" |
|
assert isinstance(task_names, Iterable), type(task_names) |
|
self.path = Path(path).absolute() |
|
self.handle_missing_data = handle_missing_data |
|
self.suffix = files_suffix |
|
self.files_per_repr, self.file_names = self._build_dataset(task_types, task_names) |
|
self.cache_task_stats = cache_task_stats |
|
self.batch_size_stats = batch_size_stats |
|
|
|
assert all(isinstance(x, str) for x in task_names), tuple(zip(task_names, (type(x) for x in task_names))) |
|
assert (diff := set(self.files_per_repr).difference(task_names)) == set(), f"Not all tasks in files: {diff}" |
|
self.task_types = {k: v for k, v in task_types.items() if k in task_names} |
|
self.task_names = sorted(task_names) |
|
logger.info(f"Tasks used in this dataset: {self.task_names}") |
|
|
|
if normalization is not None: |
|
if isinstance(normalization, str): |
|
logger.info(f"Normalization provided as a string ({normalization}). Setting all tasks to this") |
|
normalization: dict[str, str] = {task: normalization for task in self.task_names} |
|
if "*" in normalization.keys(): |
|
value = normalization.pop("*") |
|
for missing_task in set(self.task_names).difference(normalization.keys()): |
|
normalization[missing_task] = value |
|
assert all(n in ("min_max", "standardization") for n in normalization.values()), normalization |
|
assert all(k in task_names for k in normalization.keys()), set(normalization).difference(task_names) |
|
self.normalization: dict[str, str] | None = normalization |
|
|
|
self._data_shape: tuple[int, ...] | None = None |
|
self._tasks: list[NpzRepresentation] | None = None |
|
self._default_vals: dict[str, tr.Tensor] | None = None |
|
if statistics is not None: |
|
self._statistics = self._load_external_statistics(statistics) |
|
else: |
|
self._statistics = None if normalization is None else self._compute_statistics() |
|
if self._statistics is not None: |
|
for task_name, task in self.name_to_task.items(): |
|
if not task.is_classification: |
|
task.set_normalization(self.normalization[task_name], self._statistics[task_name]) |
|
|
|
|
|
|
|
@property |
|
def name_to_task(self) -> dict[str, NpzRepresentation]: |
|
return {task.name: task for task in self.tasks} |
|
|
|
@property |
|
def default_vals(self) -> dict[str, tr.Tensor]: |
|
"""default values for __getitem__ if item is not on disk but we retrieve a full batch anyway""" |
|
_default_val = float("nan") if self.handle_missing_data == "fill_nan" else 0 |
|
return {task: None if self.handle_missing_data == "fill_none" else tr.full(self.data_shape[task], _default_val) |
|
for task in self.task_names} |
|
|
|
@property |
|
def data_shape(self) -> dict[str, tuple[int, ...]]: |
|
"""Returns a {task: shape_tuple} for all representations. At least one npz file must exist for each.""" |
|
first_npz = {task: [_v for _v in files if _v is not None][0] for task, files in self.files_per_repr.items()} |
|
data_shape = {task: self.name_to_task[task].load_from_disk(first_npz[task]).shape for task in self.task_names} |
|
return {task: tuple(shape) for task, shape in data_shape.items()} |
|
|
|
@property |
|
def mins(self) -> dict[str, tr.Tensor]: |
|
"""returns a dict {task: mins[task]} for all the tasks if self.statistics exists""" |
|
assert self.normalization is not None, "No statistics for normalization is None" |
|
return {k: v[0] for k, v in self._statistics.items() if k in self.task_names} |
|
|
|
@property |
|
def maxs(self) -> dict[str, tr.Tensor]: |
|
"""returns a dict {task: mins[task]} for all the tasks if self.statistics exists""" |
|
assert self.normalization is not None, "No statistics for normalization is None" |
|
return {k: v[1] for k, v in self._statistics.items() if k in self.task_names} |
|
|
|
@property |
|
def means(self) -> dict[str, tr.Tensor]: |
|
"""returns a dict {task: mins[task]} for all the tasks if self.statistics exists""" |
|
assert self.normalization is not None, "No statistics for normalization is None" |
|
return {k: v[2] for k, v in self._statistics.items() if k in self.task_names} |
|
|
|
@property |
|
def stds(self) -> dict[str, tr.Tensor]: |
|
"""returns a dict {task: mins[task]} for all the tasks if self.statistics exists""" |
|
assert self.normalization is not None, "No statistics for normalization is None" |
|
return {k: v[3] for k, v in self._statistics.items() if k in self.task_names} |
|
|
|
@property |
|
def tasks(self) -> list[NpzRepresentation]: |
|
""" |
|
Returns a list of instantiated tasks in the same order as self.task_names. Overwrite this to add |
|
new tasks and semantics (i.e. plot_fn or doing some preprocessing after loading from disk in some tasks. |
|
""" |
|
if self._tasks is None: |
|
self._tasks = [] |
|
for task_name in self.task_names: |
|
t = self.task_types[task_name] |
|
try: |
|
t = t(task_name) |
|
except Exception: |
|
pass |
|
self._tasks.append(t) |
|
assert all(t.name == t_n for t, t_n in zip(self._tasks, self.task_names)), (self.task_names, self._tasks) |
|
return self._tasks |
|
|
|
def collate_fn(self, items: list[MultiTaskItem]) -> MultiTaskItem: |
|
""" |
|
given a list of items (i.e. from a reader[n:n+k] call), return the item batched on 1st dimension. |
|
Nones (missing data points) are turned into nans as per the data shape of that dim. |
|
""" |
|
assert all(item[2] == self.task_names for item in items), ([item[2] for item in items], self.task_names) |
|
items_name = [item[1] for item in items] |
|
res = {k: tr.zeros(len(items), *self.data_shape[k]).float() for k in self.task_names} |
|
for i in range(len(items)): |
|
for k in self.task_names: |
|
try: |
|
res[k][i][:] = items[i][0][k] if items[i][0][k] is not None else float("nan") |
|
except Exception as e: |
|
print(k, items) |
|
raise e |
|
return res, items_name, self.task_names |
|
|
|
def add_task(self, task: NpzRepresentation): |
|
"""Safely adds a task to this reader. Most likely can be optimized""" |
|
logger.debug(f"Adding a new task: '{task.name}'") |
|
assert task.name not in self.task_names, f"Task '{task.name}' already exists: {self.task_names}" |
|
self.task_names = sorted([*self.task_names, task.name]) |
|
self.task_types[task.name] = task |
|
self._tasks = None |
|
self.files_per_repr, self.file_names = self._build_dataset(self.task_types, self.task_names) |
|
|
|
def remove_task(self, task_name: str): |
|
"""Safely removes a task from this reader""" |
|
logger.debug(f"Removing a task: '{task_name}'") |
|
assert task_name in self.task_names, f"Task '{task_name}' doesn't exist: {self.task_names}" |
|
self.task_names = sorted(name for name in self.task_names if name != task_name) |
|
del self.task_types[task_name] |
|
self._tasks = None |
|
self.files_per_repr, self.file_names = self._build_dataset(self.task_types, self.task_names) |
|
|
|
|
|
|
|
def _get_all_npz_files(self) -> dict[str, list[Path]]: |
|
"""returns a dict of form: {"rgb": ["0.npz", "1.npz", ..., "N.npz"]}""" |
|
assert self.suffix == "npz", f"Only npz supported right now (though trivial to update): {self.suffix}" |
|
in_files = {} |
|
all_repr_dirs: list[str] = [x.name for x in self.path.iterdir() if x.is_dir()] |
|
for repr_dir_name in all_repr_dirs: |
|
dir_name = self.path / repr_dir_name |
|
if all(f.is_dir() for f in dir_name.iterdir()): |
|
all_files = [] |
|
for part in dir_name.iterdir(): |
|
all_files.extend(part.glob(f"*.{self.suffix}")) |
|
else: |
|
all_files = dir_name.glob(f"*.{self.suffix}") |
|
in_files[repr_dir_name] = natsorted(all_files, key=lambda x: x.name) |
|
assert not any(len(x) == 0 for x in in_files.values()), f"{ [k for k, v in in_files.items() if len(v) == 0] }" |
|
return in_files |
|
|
|
def _build_dataset(self, task_types: dict[str, NpzRepresentation], task_names: list[str]) -> BuildDatasetTuple: |
|
logger.debug(f"Building dataset from: '{self.path}'") |
|
all_npz_files = self._get_all_npz_files() |
|
all_files: dict[str, dict[str, Path]] = {k: {_v.name: _v for _v in v} for k, v in all_npz_files.items()} |
|
|
|
relevant_tasks_for_files = set() |
|
for task_name in task_names: |
|
relevant_tasks_for_files.update(task_types[task_name].dep_names) |
|
if (diff := relevant_tasks_for_files.difference(all_files)) != set(): |
|
raise FileNotFoundError(f"Missing files for {diff}.\nFound on disk: {[*all_files]}") |
|
names_to_tasks: dict[str, list[str]] = {} |
|
for task_name in relevant_tasks_for_files: |
|
for path_name in all_files[task_name].keys(): |
|
names_to_tasks.setdefault(path_name, []) |
|
names_to_tasks[path_name].append(task_name) |
|
|
|
if self.handle_missing_data == "drop": |
|
b4 = len(names_to_tasks) |
|
names_to_tasks = {k: v for k, v in names_to_tasks.items() if len(v) == len(relevant_tasks_for_files)} |
|
logger.debug(f"Dropped {b4 - len(names_to_tasks)} files not in all tasks") |
|
all_names: list[str] = natsorted(names_to_tasks.keys()) |
|
logger.info(f"Total files: {len(names_to_tasks)} per task across {len(task_names)} tasks") |
|
|
|
files_per_task: dict[str, list[str | None] | list[list[str] | None]] = {task: [] for task in task_names} |
|
for name in all_names: |
|
for task in task_names: |
|
all_deps_exist = set(deps := task_types[task].dep_names).issubset(names_to_tasks[name]) |
|
if not all_deps_exist: |
|
files_per_task[task].append(None) |
|
else: |
|
paths = [all_files[dep][name] for dep in deps] |
|
files_per_task[task].append(paths if len(deps) > 1 else paths[0]) |
|
return files_per_task, all_names |
|
|
|
def _compute_statistics(self) -> dict[str, TaskStatistics]: |
|
cache_path = self.path / f".task_statistics.npz" |
|
res: dict[str, TaskStatistics] = {} |
|
if self.cache_task_stats and cache_path.exists(): |
|
res = np.load(cache_path, allow_pickle=True)["arr_0"].item() |
|
logger.info(f"Loaded task statistics: { {k: tuple(v[0].shape) for k, v in res.items()} } from {cache_path}") |
|
missing_tasks = [t for t in set(self.task_names).difference(res) if not self.name_to_task[t].is_classification] |
|
if len(missing_tasks) == 0: |
|
return res |
|
logger.info(f"Computing global task statistics (dataset len {len(self)}) for {missing_tasks}") |
|
res = {**res, **self._compute_channel_level_stats(missing_tasks)} |
|
logger.info(f"Computed task statistics: { {k: tuple(v[0].shape) for k, v in res.items()} }") |
|
np.savez(cache_path, res) |
|
return res |
|
|
|
def _compute_channel_level_stats(self, missing_tasks: list[str]) -> dict[str, TaskStatistics]: |
|
|
|
def update(counts: tr.Tensor, counts_delta: float, mean: tr.Tensor, M2: tr.Tensor, |
|
new_value: tr.Tensor) -> tuple[tr.Tensor, tr.Tensor, tr.Tensor]: |
|
new_count = counts + counts_delta |
|
batch_mean = new_value.nanmean(0) |
|
batch_var = ((new_value - batch_mean) ** 2).nansum(0) |
|
delta = batch_mean - mean |
|
new_count_no_zero = new_count + (new_count == 0) |
|
new_mean = mean + delta * counts_delta / new_count_no_zero |
|
new_M2 = M2 + batch_var + delta**2 * counts * counts_delta / new_count_no_zero |
|
assert not new_mean.isnan().any() and not new_M2.isnan().any(), (mean, new_mean, counts, counts_delta) |
|
return new_count, new_mean, new_M2 |
|
|
|
assert not any(mt := [self.name_to_task[t].is_classification for t in missing_tasks]), mt |
|
assert len(missing_tasks) > 0, missing_tasks |
|
ch = {k: v[-1] if len(v) == 3 else 1 for k, v in self.data_shape.items()} |
|
counts = {task_name: tr.zeros(ch[task_name]).long() for task_name in missing_tasks} |
|
mins = {task_name: tr.zeros(ch[task_name]).type(tr.float64) + 10**10 for task_name in missing_tasks} |
|
maxs = {task_name: tr.zeros(ch[task_name]).type(tr.float64) - 10**10 for task_name in missing_tasks} |
|
means_vec = {task_name: tr.zeros(ch[task_name]).type(tr.float64) for task_name in missing_tasks} |
|
M2s_vec = {task_name: tr.zeros(ch[task_name]).type(tr.float64) for task_name in missing_tasks} |
|
|
|
old_names, old_normalization = self.task_names, self.normalization |
|
self.task_names, self.normalization = missing_tasks, None |
|
res = {} |
|
BS = min(len(self), self.batch_size_stats) |
|
n = (len(self) // BS) + (len(self) % BS != 0) |
|
|
|
logger.debug(f"Global task statistics. Batch size: {BS}. N iterations: {n}.") |
|
for ix in trange(n, disable=os.getenv("STATS_PBAR", "0") == "0", desc="Computing stats"): |
|
item = self[ix * BS: min(len(self), (ix + 1) * BS)][0] |
|
for task in missing_tasks: |
|
item_flat_ch = item[task].reshape(-1, ch[task]) |
|
item_no_nan = item_flat_ch.nan_to_num(0).type(tr.float64) |
|
mins[task] = tr.minimum(mins[task], item_no_nan.min(0)[0]) |
|
maxs[task] = tr.maximum(maxs[task], item_no_nan.max(0)[0]) |
|
counts_delta = (item_flat_ch == item_flat_ch).long().sum(0) |
|
counts[task], means_vec[task], M2s_vec[task] = \ |
|
update(counts[task], counts_delta, means_vec[task], M2s_vec[task], item_no_nan) |
|
|
|
for task in missing_tasks: |
|
res[task] = (mins[task], maxs[task], means_vec[task], (M2s_vec[task] / counts[task]).sqrt()) |
|
assert not any(x[0].isnan().any() for x in res[task]), (task, res[task]) |
|
self.task_names, self.normalization = old_names, old_normalization |
|
return res |
|
|
|
def _load_external_statistics(self, statistics: dict[str, TaskStatistics | list]) -> dict[str, TaskStatistics]: |
|
tasks_no_classif = [t for t in set(self.task_names) if not self.name_to_task[t].is_classification] |
|
assert (diff := set(tasks_no_classif).difference(statistics)) == set(), f"Missing tasks: {diff}" |
|
res: dict[str, TaskStatistics] = {} |
|
for k, v in statistics.items(): |
|
if k in self.task_names: |
|
res[k] = tuple(tr.Tensor(x) for x in v) |
|
assert all(_stat.shape == (nd := (self.name_to_task[k].n_channels, )) for _stat in res[k]), (res[k], nd) |
|
logger.info(f"External statistics provided: { {k: tuple(v[0].shape) for k, v in res.items()} }") |
|
return res |
|
|
|
|
|
|
|
def __getitem__(self, index: int | slice | list[int] | tuple) -> MultiTaskItem: |
|
"""Read the data all the desired nodes""" |
|
assert isinstance(index, (int, slice, list, tuple, str)), type(index) |
|
if isinstance(index, slice): |
|
assert index.start is not None and index.stop is not None and index.step is None, "Only reader[l:r] allowed" |
|
index = list(range(index.stop)[index]) |
|
if isinstance(index, (list, tuple)): |
|
return self.collate_fn([self.__getitem__(ix) for ix in index]) |
|
if isinstance(index, str): |
|
return self.__getitem__(self.file_names.index(index)) |
|
|
|
res: dict[str, tr.Tensor] = {} |
|
for task_name in self.task_names: |
|
task = [t for t in self.tasks if t.name == task_name][0] |
|
file_path = self.files_per_repr[task_name][index] |
|
res[task_name] = self.default_vals[task_name] if file_path is None else task.load_from_disk(file_path) |
|
if not task.is_classification: |
|
if self.normalization is not None and self.normalization[task_name] == "min_max": |
|
res[task_name] = task.normalize(res[task_name]) |
|
if self.normalization is not None and self.normalization[task_name] == "standardization": |
|
res[task_name] = task.standardize(res[task_name]) |
|
return (res, self.file_names[index], self.task_names) |
|
|
|
def __len__(self) -> int: |
|
return len(self.files_per_repr[self.task_names[0]]) |
|
|
|
def __str__(self): |
|
f_str = f"[{str(type(self)).rsplit('.', maxsplit=1)[-1][0:-2]}]" |
|
f_str += f"\n - Path: '{self.path}'" |
|
f_str += f"\n - Tasks ({len(self.tasks)}): {self.tasks}" |
|
f_str += f"\n - Length: {len(self)}" |
|
f_str += f"\n - Handle missing data mode: '{self.handle_missing_data}'" |
|
f_str += f"\n - Normalization: '{self.normalization}'" |
|
return f_str |
|
|
|
def __repr__(self): |
|
return str(self) |
|
|
|
def main(): |
|
"""main fn""" |
|
parser = ArgumentParser() |
|
parser.add_argument("dataset_path", type=Path) |
|
parser.add_argument("--handle_missing_data", choices=("drop", "fill_none"), default="fill_none") |
|
args = parser.parse_args() |
|
|
|
reader = MultiTaskDataset(args.dataset_path, task_names=None, handle_missing_data=args.handle_missing_data) |
|
print(reader) |
|
print(f"Shape: {reader.data_shape}") |
|
|
|
rand_ix = np.random.randint(len(reader)) |
|
data, name, repr_names = reader[rand_ix] |
|
print(f"Name: {name}. Nodes: {repr_names}") |
|
pprint({k: v for k, v in data.items()}) |
|
|
|
data, name, repr_names = reader[rand_ix: min(len(reader), rand_ix + 5)] |
|
print(f"Name: {name}. Nodes: {repr_names}") |
|
pprint({k: v for k, v in data.items()}) |
|
|
|
loader = DataLoader(reader, collate_fn=reader.collate_fn, batch_size=5, shuffle=True) |
|
data, name, repr_names = next(iter(loader)) |
|
print(f"Name: {name}. Nodes: {repr_names}") |
|
pprint({k: v for k, v in data.items()}) |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|