Meehai commited on
Commit
39f2bc8
·
1 Parent(s): 7b47e95

Seems to work. Implemented SemanticMapper in DronescapesRepresentation. Not fully generic, but good enough.

Browse files
data/train_set/.task_statistics.npz CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:eed73f43285542ff4d3c0781cb7ba1eedb1ca48b7f28f323bfdecd7c32ec46f6
3
- size 26947
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f601e71980200cacfc43a1b3ed5d7d932b538b8cf94d569d74911a0d3604b54
3
+ size 28542
dronescapes_reader/dronescapes_representations.py CHANGED
@@ -94,12 +94,16 @@ class SemanticRepresentation(NpzRepresentation):
94
  return new_images
95
 
96
  class SemanticMapper(SemanticRepresentation):
97
- """Maps one or more semantic segmentations to a final one + a merge fn. Copy-pasta from VRE"""
 
 
 
98
  def __init__(self, *args, original_classes: list[list[str]], mapping: list[dict[str, list[str]]],
99
  color_map: list[tuple[int, int, int]],
100
  merge_fn: Callable[[list[np.ndarray]], np.ndarray] | None = None, **kwargs):
101
  super().__init__(*args, classes=list(mapping[0].keys()), color_map=color_map, **kwargs)
102
- assert len(self.dependencies) >= 1, "No dependencies provided. Need at least one semantic segmentation to map."
 
103
  assert isinstance(mapping, list), type(mapping)
104
  assert len(mapping) == (B := len(self.dependencies)), (len(mapping), B)
105
  assert (A := len(original_classes)) == len(self.dependencies), (A, B)
@@ -233,8 +237,10 @@ tasks = [ # some pre-baked representations
233
  NormalsRepresentation("normals_sfm_manual202204"),
234
  OpticalFlowRepresentation("opticalflow_rife"),
235
  SemanticRepresentation("semantic_segprop8", classes=8, color_map=color_map_8classes),
236
- SemanticMapper("semantic_mask2former_swin_mapillary_converted", original_classes=[mapillary_classes],
237
- mapping=[m2f_mapillary_to_8_classes], color_map=color_map_8classes),
 
 
238
  SemanticRepresentation("semantic_mask2former_coco_47429163_0", classes=coco_classes, color_map=coco_color_map),
239
  SemanticRepresentation("semantic_mask2former_mapillary_49189528_0", classes=mapillary_classes,
240
  color_map=mapillary_color_map),
 
94
  return new_images
95
 
96
  class SemanticMapper(SemanticRepresentation):
97
+ """
98
+ Maps one or more semantic segmentations to a final one + a merge fn. Copy-pasta from VRE.
99
+ TODO: allow non-semantic dependencies (must pass the correct load_fn or object instead of assuming semantic deps)
100
+ """
101
  def __init__(self, *args, original_classes: list[list[str]], mapping: list[dict[str, list[str]]],
102
  color_map: list[tuple[int, int, int]],
103
  merge_fn: Callable[[list[np.ndarray]], np.ndarray] | None = None, **kwargs):
104
  super().__init__(*args, classes=list(mapping[0].keys()), color_map=color_map, **kwargs)
105
+ assert len(self.dependencies) >= 1 and self.dependencies[0] != self.name, \
106
+ "No dependencies provided. Need at least one semantic segmentation to map."
107
  assert isinstance(mapping, list), type(mapping)
108
  assert len(mapping) == (B := len(self.dependencies)), (len(mapping), B)
109
  assert (A := len(original_classes)) == len(self.dependencies), (A, B)
 
237
  NormalsRepresentation("normals_sfm_manual202204"),
238
  OpticalFlowRepresentation("opticalflow_rife"),
239
  SemanticRepresentation("semantic_segprop8", classes=8, color_map=color_map_8classes),
240
+ SemanticRepresentation("semantic_mask2former_swin_mapillary_converted", classes=8, color_map=color_map_8classes),
241
+ SemanticMapper("semantic_mask2former_swin_mapillary_converted2", original_classes=[mapillary_classes],
242
+ mapping=[m2f_mapillary_to_8_classes], color_map=color_map_8classes,
243
+ dependencies=["semantic_mask2former_mapillary_49189528_0"]),
244
  SemanticRepresentation("semantic_mask2former_coco_47429163_0", classes=coco_classes, color_map=coco_color_map),
245
  SemanticRepresentation("semantic_mask2former_mapillary_49189528_0", classes=mapillary_classes,
246
  color_map=mapillary_color_map),
dronescapes_reader/multitask_dataset.py CHANGED
@@ -107,7 +107,10 @@ class MultiTaskDataset(Dataset):
107
  self._statistics = None if normalization is None else self._compute_statistics()
108
  if self._statistics is not None:
109
  for task_name, task in self.name_to_task.items():
110
- task.set_normalization(self.normalization[task_name], self._statistics[task_name])
 
 
 
111
 
112
  # Public methods and properties
113
 
 
107
  self._statistics = None if normalization is None else self._compute_statistics()
108
  if self._statistics is not None:
109
  for task_name, task in self.name_to_task.items():
110
+ try:
111
+ task.set_normalization(self.normalization[task_name], self._statistics[task_name])
112
+ except:
113
+ breakpoint()
114
 
115
  # Public methods and properties
116
 
scripts/dronescapes_viewer.ipynb CHANGED
The diff for this file is too large to render. See raw diff
 
scripts/dronescapes_viewer.py CHANGED
@@ -7,6 +7,7 @@ from dronescapes_reader.dronescapes_representations import dronescapes_task_type
7
  from pprint import pprint
8
  from torch.utils.data import DataLoader
9
  import random
 
10
 
11
  def main():
12
  assert len(sys.argv) == 2, f"Usage ./dronescapes_viewer.py /path/to/dataset"
@@ -23,6 +24,10 @@ def main():
23
  data, name, repr_names = reader[rand_ix] # get a random item
24
  pprint({k: v for k, v in data.items()})
25
 
 
 
 
 
26
  print("== Random loaded batch ==")
27
  batch_data, name, repr_names = reader[rand_ix: min(len(reader), rand_ix + 5)] # get a random batch
28
  pprint({k: v for k, v in batch_data.items()}) # Nones are converted to 0s automagically
 
7
  from pprint import pprint
8
  from torch.utils.data import DataLoader
9
  import random
10
+ import numpy as np
11
 
12
  def main():
13
  assert len(sys.argv) == 2, f"Usage ./dronescapes_viewer.py /path/to/dataset"
 
24
  data, name, repr_names = reader[rand_ix] # get a random item
25
  pprint({k: v for k, v in data.items()})
26
 
27
+ img_data = {}
28
+ for k, v in data.items():
29
+ img_data[k] = reader.name_to_task[k].plot_fn(v) if v is not None else np.zeros((*reader.data_shape[k][0:2], 3))
30
+
31
  print("== Random loaded batch ==")
32
  batch_data, name, repr_names = reader[rand_ix: min(len(reader), rand_ix + 5)] # get a random batch
33
  pprint({k: v for k, v in batch_data.items()}) # Nones are converted to 0s automagically