Meehai commited on
Commit
3a808fd
·
1 Parent(s): ef58a7b

more updates to dronescapes. Added TaskMapper and more control over mappings. We can do generic dependencies now, not just semantic.

Browse files
dronescapes_reader/dronescapes_representations.py CHANGED
@@ -93,57 +93,32 @@ class SemanticRepresentation(NpzRepresentation):
93
  new_images[x_argmax == i] = self.color_map[i]
94
  return new_images
95
 
96
- class SemanticMapper(SemanticRepresentation):
97
- """
98
- Maps one or more semantic segmentations to a final one + a merge fn. Copy-pasta from VRE.
99
- TODO: allow non-semantic dependencies (must pass the correct load_fn or object instead of assuming semantic deps)
100
- """
101
- def __init__(self, *args, original_classes: list[list[str]], mapping: list[dict[str, list[str]]],
102
- color_map: list[tuple[int, int, int]],
103
- merge_fn: Callable[[list[np.ndarray]], np.ndarray] | None = None, **kwargs):
104
- super().__init__(*args, classes=list(mapping[0].keys()), color_map=color_map, **kwargs)
105
- assert len(self.dependencies) >= 1 and self.dependencies[0] != self.name, \
106
- "No dependencies provided. Need at least one semantic segmentation to map."
107
- assert isinstance(mapping, list), type(mapping)
108
- assert len(mapping) == (B := len(self.dependencies)), (len(mapping), B)
109
- assert (A := len(original_classes)) == len(self.dependencies), (A, B)
110
- assert all(m.keys() == mapping[0].keys() for m in mapping), [list(m.keys()) for m in mapping]
111
- assert len(color_map) == len(mapping[0].keys()), (len(color_map), len(mapping[0].keys()))
112
- self.original_classes = original_classes
113
- self.mapping = mapping
114
- self.merge_fn = merge_fn if merge_fn is not None else SemanticMapper._default_merge_fn
115
-
116
- @staticmethod
117
- def _default_merge_fn(dep_data: list[np.ndarray]) -> np.ndarray:
118
- if len(dep_data) > 1:
119
- raise ValueError(f"default_merge_fn doesnt' work with >1 dependencies: {len(dep_data)}")
120
- return dep_data[0]
121
-
122
- def _make_one(self, path: Path, mapping: dict[str, list[str]],
123
- original_classes: list[str]) -> np.ndarray:
124
- semantic_dep_data: np.ndarray = NpzRepresentation.load_from_disk(self, path).numpy()
125
- semantic_dep_data = semantic_dep_data.argmax(-1) if len(semantic_dep_data.shape) == 3 else semantic_dep_data
126
- assert len(semantic_dep_data.shape) == 2, f"Only argmaxed data supported, got: {semantic_dep_data.shape}"
127
- assert semantic_dep_data.dtype in (np.uint8, np.uint16), semantic_dep_data.dtype
128
- mapping_ix = {list(mapping.keys()).index(k): [original_classes.index(_v)
129
- for _v in v] for k, v in mapping.items()}
130
- flat_mapping = {}
131
- for k, v in mapping_ix.items():
132
- for _v in v:
133
- flat_mapping[_v] = k
134
- mapped_data = np.vectorize(flat_mapping.get)(semantic_dep_data).astype(np.uint8)
135
- return mapped_data
136
-
137
- def load_from_disk(self, path: Path | list[Path]):
138
- # note: assuming SemanticRepresentation for all deps. TODO: generic deps.
139
  paths = [path] if isinstance(path, Path) else path
140
- assert len(paths) == len(self.dependencies), (len(path), len(self.dependencies))
141
- individual_semantics = []
142
- for path, mapping, original_classes in zip(paths, self.mapping, self.original_classes):
143
- individual_semantics.append(self._make_one(path, mapping, original_classes))
144
- res = self.merge_fn(individual_semantics)
145
- res_torch = F.one_hot(tr.from_numpy(res).long(), num_classes=self.n_classes).float()
146
- return res_torch
147
 
148
  color_map_8classes = [[0, 255, 0], [0, 127, 0], [255, 255, 0], [255, 255, 255],
149
  [255, 0, 0], [0, 0, 255], [0, 255, 255], [127, 127, 63]]
@@ -207,27 +182,48 @@ mapillary_color_map = [[165, 42, 42], [0, 192, 0], [196, 196, 196], [190, 153, 1
207
  [0, 60, 100], [0, 0, 142], [0, 0, 90], [0, 0, 230], [0, 80, 100], [128, 64, 64], [0, 0, 110],
208
  [0, 0, 70], [0, 0, 192], [32, 32, 32], [120, 10, 10]]
209
 
210
- m2f_mapillary_to_8_classes = {
211
- "land": ["Terrain", "Sand", "Snow"],
212
- "forest": ["Vegetation"],
213
- "residential": ["Building", "Utility Pole", "Pole", "Fence", "Wall", "Manhole", "Street Light", "Curb",
214
- "Guard Rail", "Caravan", "Junction Box", "Traffic Sign (Front)", "Billboard", "Banner",
215
- "Mailbox", "Traffic Sign (Back)", "Bench", "Fire Hydrant", "Trash Can", "CCTV Camera",
216
- "Traffic Light", "Barrier", "Rail Track", "Phone Booth", "Curb Cut", "Traffic Sign Frame",
217
- "Bike Rack"],
218
- "road": ["Road", "Lane Marking - General", "Sidewalk", "Bridge", "Other Vehicle", "Motorcyclist", "Pothole",
219
- "Catch Basin", "Car Mount", "Tunnel", "Parking", "Service Lane", "Lane Marking - Crosswalk",
220
- "Pedestrian Area", "On Rails", "Bike Lane", "Crosswalk - Plain"],
221
- "little-objects": ["Car", "Person", "Truck", "Boat", "Wheeled Slow", "Trailer", "Ground Animal", "Bicycle",
222
- "Motorcycle", "Bird", "Bus", "Ego Vehicle", "Bicyclist", "Other Rider"],
223
- "water": ["Water"],
224
- "sky": ["Sky"],
225
- "hill": ["Mountain"]
226
- }
227
-
228
- tasks = [ # some pre-baked representations
229
- RGBRepresentation("rgb"),
230
- HSVRepresentation("hsv", dependencies=["rgb"]),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
231
  EdgesRepresentation("edges_dexined"),
232
  EdgesRepresentation("edges_gb"),
233
  DepthRepresentation("depth_dpt", min_depth=0, max_depth=0.999),
@@ -237,12 +233,10 @@ tasks = [ # some pre-baked representations
237
  NormalsRepresentation("normals_sfm_manual202204"),
238
  OpticalFlowRepresentation("opticalflow_rife"),
239
  SemanticRepresentation("semantic_segprop8", classes=8, color_map=color_map_8classes),
240
- SemanticMapper("semantic_mask2former_swin_mapillary_converted", original_classes=[mapillary_classes],
241
- mapping=[m2f_mapillary_to_8_classes], color_map=color_map_8classes,
242
- dependencies=["semantic_mask2former_mapillary_49189528_0"]),
243
  SemanticRepresentation("semantic_mask2former_coco_47429163_0", classes=coco_classes, color_map=coco_color_map),
244
- SemanticRepresentation("semantic_mask2former_mapillary_49189528_0", classes=mapillary_classes,
245
- color_map=mapillary_color_map),
 
246
  NpzRepresentation("softseg_gb", 3),
247
  ]
248
- dronescapes_task_types: dict[str, NpzRepresentation] = {task.name: task for task in tasks}
 
93
  new_images[x_argmax == i] = self.color_map[i]
94
  return new_images
95
 
96
+ def semantic_mapper(semantic_original: np.ndarray, mapping: dict[str, list[str]],
97
+ original_classes: list[str]) -> np.ndarray:
98
+ """maps a bigger semantic segmentation to a smaller one"""
99
+ assert len(semantic_original.shape) == 2, f"Only argmaxed data supported, got: {semantic_original.shape}"
100
+ assert np.issubdtype(semantic_original.dtype, np.integer), semantic_original.dtype
101
+ mapping_ix = {list(mapping.keys()).index(k): [original_classes.index(_v) for _v in v] for k, v in mapping.items()}
102
+ flat_mapping = {}
103
+ for k, v in mapping_ix.items():
104
+ for _v in v:
105
+ flat_mapping[_v] = k
106
+ mapped_data = np.vectorize(flat_mapping.get)(semantic_original).astype(np.uint8)
107
+ return mapped_data
108
+
109
+ class TaskMapper(NpzRepresentation):
110
+ def __init__(self, *args, merge_fn: Callable[[list[np.ndarray]], tr.Tensor], **kwargs):
111
+ super().__init__(*args, **kwargs)
112
+ assert len(self.dependencies) > 0 and self.dep_names[0] != self.name, "Need at least one dependency"
113
+ self.merge_fn = merge_fn
114
+
115
+ def load_from_disk(self, path: Path | list[Path]) -> tr.Tensor:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116
  paths = [path] if isinstance(path, Path) else path
117
+ dep_data = [dep.load_from_disk(path) for dep, path in zip(self.dependencies, paths)]
118
+ return self.merge_fn(dep_data)
119
+
120
+ def plot_fn(self, x):
121
+ raise NotImplementedError("Must be overriden by the user")
 
 
122
 
123
  color_map_8classes = [[0, 255, 0], [0, 127, 0], [255, 255, 0], [255, 255, 255],
124
  [255, 0, 0], [0, 0, 255], [0, 255, 255], [127, 127, 63]]
 
182
  [0, 60, 100], [0, 0, 142], [0, 0, 90], [0, 0, 230], [0, 80, 100], [128, 64, 64], [0, 0, 110],
183
  [0, 0, 70], [0, 0, 192], [32, 32, 32], [120, 10, 10]]
184
 
185
+ class SemanticMask2FormerMapillaryConvertedPaper(TaskMapper):
186
+ def __init__(self, dep: NpzRepresentation):
187
+ super().__init__("semantic_mask2former_swin_mapillary_converted",
188
+ dependencies=[dep], merge_fn=self._merge_fn, n_channels=8)
189
+ self.mapping = {
190
+ "land": ["Terrain", "Sand", "Snow"],
191
+ "forest": ["Vegetation"],
192
+ "residential": ["Building", "Utility Pole", "Pole", "Fence", "Wall", "Manhole", "Street Light", "Curb",
193
+ "Guard Rail", "Caravan", "Junction Box", "Traffic Sign (Front)", "Billboard", "Banner",
194
+ "Mailbox", "Traffic Sign (Back)", "Bench", "Fire Hydrant", "Trash Can", "CCTV Camera",
195
+ "Traffic Light", "Barrier", "Rail Track", "Phone Booth", "Curb Cut", "Traffic Sign Frame",
196
+ "Bike Rack"],
197
+ "road": ["Road", "Lane Marking - General", "Sidewalk", "Bridge", "Other Vehicle", "Motorcyclist", "Pothole",
198
+ "Catch Basin", "Car Mount", "Tunnel", "Parking", "Service Lane", "Lane Marking - Crosswalk",
199
+ "Pedestrian Area", "On Rails", "Bike Lane", "Crosswalk - Plain"],
200
+ "little-objects": ["Car", "Person", "Truck", "Boat", "Wheeled Slow", "Trailer", "Ground Animal", "Bicycle",
201
+ "Motorcycle", "Bird", "Bus", "Ego Vehicle", "Bicyclist", "Other Rider"],
202
+ "water": ["Water"],
203
+ "sky": ["Sky"],
204
+ "hill": ["Mountain"]
205
+ }
206
+ self.color_map = color_map_8classes
207
+ self.original_classes = mapillary_classes
208
+ self.classes = list(self.mapping.keys())
209
+ self.n_classes = len(self.classes)
210
+
211
+ def plot_fn(self, x: tr.Tensor) -> np.ndarray:
212
+ x_argmax = x.squeeze().nan_to_num(0).detach().argmax(-1).cpu().numpy()
213
+ new_images = np.zeros((*x_argmax.shape, 3), dtype=np.uint8)
214
+ for i in range(self.n_classes):
215
+ new_images[x_argmax == i] = self.color_map[i]
216
+ return new_images
217
+
218
+ def _merge_fn(self, dep_data: list[np.ndarray]) -> tr.Tensor:
219
+ m2f_mapillary = dep_data[0].argmax(-1).numpy()
220
+ m2f_mapillary_converted = semantic_mapper(m2f_mapillary, self.mapping, self.original_classes)
221
+ converted_oh = F.one_hot(tr.from_numpy(m2f_mapillary_converted).long(), num_classes=self.n_classes).float()
222
+ return converted_oh
223
+
224
+ _tasks: list[NpzRepresentation] = [ # some pre-baked representations
225
+ rgb := RGBRepresentation("rgb"),
226
+ HSVRepresentation("hsv", dependencies=[rgb]),
227
  EdgesRepresentation("edges_dexined"),
228
  EdgesRepresentation("edges_gb"),
229
  DepthRepresentation("depth_dpt", min_depth=0, max_depth=0.999),
 
233
  NormalsRepresentation("normals_sfm_manual202204"),
234
  OpticalFlowRepresentation("opticalflow_rife"),
235
  SemanticRepresentation("semantic_segprop8", classes=8, color_map=color_map_8classes),
 
 
 
236
  SemanticRepresentation("semantic_mask2former_coco_47429163_0", classes=coco_classes, color_map=coco_color_map),
237
+ m2f_mapillary := SemanticRepresentation("semantic_mask2former_mapillary_49189528_0", classes=mapillary_classes,
238
+ color_map=mapillary_color_map),
239
+ SemanticMask2FormerMapillaryConvertedPaper(m2f_mapillary),
240
  NpzRepresentation("softseg_gb", 3),
241
  ]
242
+ dronescapes_task_types: dict[str, NpzRepresentation] = {task.name: task for task in _tasks}
dronescapes_reader/multitask_dataset.py CHANGED
@@ -229,8 +229,9 @@ class MultiTaskDataset(Dataset):
229
 
230
  relevant_tasks_for_files = set() # hsv requires only rgb, so we look at dependencies later on
231
  for task_name in task_names:
232
- relevant_tasks_for_files.update(task_types[task_name].dependencies)
233
- assert (diff := relevant_tasks_for_files.difference(all_files)) == set(), diff
 
234
  names_to_tasks: dict[str, list[str]] = {} # {name: [task]}
235
  for task_name in relevant_tasks_for_files: # just the relevant tasks
236
  for path_name in all_files[task_name].keys():
@@ -247,7 +248,7 @@ class MultiTaskDataset(Dataset):
247
  files_per_task: dict[str, list[str | None] | list[list[str] | None]] = {task: [] for task in task_names}
248
  for name in all_names:
249
  for task in task_names:
250
- all_deps_exist = set(deps := task_types[task].dependencies).issubset(names_to_tasks[name])
251
  if not all_deps_exist:
252
  files_per_task[task].append(None) # if any of the deps don't exist for this task, skip it.
253
  else:
 
229
 
230
  relevant_tasks_for_files = set() # hsv requires only rgb, so we look at dependencies later on
231
  for task_name in task_names:
232
+ relevant_tasks_for_files.update(task_types[task_name].dep_names)
233
+ if (diff := relevant_tasks_for_files.difference(all_files)) != set():
234
+ raise FileNotFoundError(f"Missing files for {diff}.\nFound on disk: {[*all_files]}")
235
  names_to_tasks: dict[str, list[str]] = {} # {name: [task]}
236
  for task_name in relevant_tasks_for_files: # just the relevant tasks
237
  for path_name in all_files[task_name].keys():
 
248
  files_per_task: dict[str, list[str | None] | list[list[str] | None]] = {task: [] for task in task_names}
249
  for name in all_names:
250
  for task in task_names:
251
+ all_deps_exist = set(deps := task_types[task].dep_names).issubset(names_to_tasks[name])
252
  if not all_deps_exist:
253
  files_per_task[task].append(None) # if any of the deps don't exist for this task, skip it.
254
  else:
dronescapes_reader/npz_representation.py CHANGED
@@ -6,10 +6,12 @@ import torch as tr
6
 
7
  class NpzRepresentation:
8
  """Generic Task with data read from/saved to npz files. Tries to read data as-is from disk and store it as well"""
9
- def __init__(self, name: str, n_channels: int, dependencies: list[str] | None = None):
10
  self.name = name
11
  self.n_channels = n_channels
12
- self.dependencies: list[str] = [name] if dependencies is None else dependencies
 
 
13
  self.classes: list[str] | None = None
14
  self.normalization: str | None = None
15
  self.min: tr.Tensor | None = None
@@ -22,6 +24,11 @@ class NpzRepresentation:
22
  """if we have self.classes"""
23
  return self.classes is not None
24
 
 
 
 
 
 
25
  def set_normalization(self, normalization: str, stats: tuple[tr.Tensor, tr.Tensor, tr.Tensor, tr.Tensor]):
26
  """sets the normalization"""
27
  assert normalization in ("min_max", "standardization"), normalization
 
6
 
7
  class NpzRepresentation:
8
  """Generic Task with data read from/saved to npz files. Tries to read data as-is from disk and store it as well"""
9
+ def __init__(self, name: str, n_channels: int, dependencies: list[NpzRepresentation] | None = None):
10
  self.name = name
11
  self.n_channels = n_channels
12
+ dependencies = deps = [self] if dependencies is None else dependencies
13
+ self.dependencies: list[NpzRepresentation] = dependencies
14
+ assert all(isinstance(dep, NpzRepresentation) for dep in deps), f"{self}: {dict(zip(deps, map(type, deps)))}"
15
  self.classes: list[str] | None = None
16
  self.normalization: str | None = None
17
  self.min: tr.Tensor | None = None
 
24
  """if we have self.classes"""
25
  return self.classes is not None
26
 
27
+ @property
28
+ def dep_names(self) -> list[str]:
29
+ """The names of the dependencies of this representation"""
30
+ return [dep.name for dep in self.dependencies]
31
+
32
  def set_normalization(self, normalization: str, stats: tuple[tr.Tensor, tr.Tensor, tr.Tensor, tr.Tensor]):
33
  """sets the normalization"""
34
  assert normalization in ("min_max", "standardization"), normalization
scripts/semantic_mapper.ipynb CHANGED
The diff for this file is too large to render. See raw diff