small changes to dronescapes_reader. Added initial support for norm/std
Browse files
dronescapes_reader/__init__.py
CHANGED
@@ -1,22 +1,2 @@
|
|
1 |
"""init file"""
|
2 |
from .multitask_dataset import MultiTaskDataset, NpzRepresentation
|
3 |
-
from .dronescapes_representations import DepthRepresentation, OpticalFlowRepresentation, SemanticRepresentation, \
|
4 |
-
ColorRepresentation, EdgesRepresentation, NormalsRepresentation, HSVRepresentation
|
5 |
-
|
6 |
-
_color_map = [[0, 255, 0], [0, 127, 0], [255, 255, 0], [255, 255, 255],
|
7 |
-
[255, 0, 0], [0, 0, 255], [0, 255, 255], [127, 127, 63]]
|
8 |
-
_m2f_name = "semantic_mask2former_swin_mapillary_converted"
|
9 |
-
dronescapes_task_types = { # some pre-baked representations
|
10 |
-
"rgb": ColorRepresentation("rgb", 3),
|
11 |
-
"hsv": HSVRepresentation("hsv", 3),
|
12 |
-
"edges_dexined": ColorRepresentation("edges_dexined", 1),
|
13 |
-
"depth_dpt": DepthRepresentation("depth_dpt", min_depth=0, max_depth=0.999),
|
14 |
-
"depth_sfm_manual202204": DepthRepresentation("depth_sfm_manual202204", min_depth=0, max_depth=300),
|
15 |
-
"normals_sfm_manual202204": NormalsRepresentation("normals_sfm_manual202204"),
|
16 |
-
"depth_ufo": DepthRepresentation("depth_ufo", min_depth=0, max_depth=1),
|
17 |
-
"opticalflow_rife": OpticalFlowRepresentation,
|
18 |
-
"semantic_segprop8": SemanticRepresentation("semantic_segprop8", classes=8, color_map=_color_map),
|
19 |
-
_m2f_name: SemanticRepresentation(_m2f_name, classes=8, color_map=_color_map),
|
20 |
-
"softseg_gb": ColorRepresentation("softseg_gb", 3),
|
21 |
-
"edges_gb": EdgesRepresentation("edges_gb"),
|
22 |
-
}
|
|
|
1 |
"""init file"""
|
2 |
from .multitask_dataset import MultiTaskDataset, NpzRepresentation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dronescapes_reader/dronescapes_representations.py
CHANGED
@@ -7,9 +7,10 @@ import flow_vis
|
|
7 |
from skimage.color import rgb2hsv, hsv2rgb
|
8 |
from overrides import overrides
|
9 |
from matplotlib.cm import hot # pylint: disable=no-name-in-module
|
10 |
-
from .multitask_dataset import NpzRepresentation
|
11 |
from torch.nn import functional as F
|
12 |
|
|
|
|
|
13 |
class ColorRepresentation(NpzRepresentation):
|
14 |
def __init__(self, name: str, n_channels: int):
|
15 |
super().__init__(name)
|
@@ -134,3 +135,21 @@ class SemanticRepresentation(NpzRepresentation):
|
|
134 |
@overrides
|
135 |
def n_channels(self) -> int:
|
136 |
return self.n_classes
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
from skimage.color import rgb2hsv, hsv2rgb
|
8 |
from overrides import overrides
|
9 |
from matplotlib.cm import hot # pylint: disable=no-name-in-module
|
|
|
10 |
from torch.nn import functional as F
|
11 |
|
12 |
+
from npz_representation import NpzRepresentation
|
13 |
+
|
14 |
class ColorRepresentation(NpzRepresentation):
|
15 |
def __init__(self, name: str, n_channels: int):
|
16 |
super().__init__(name)
|
|
|
135 |
@overrides
|
136 |
def n_channels(self) -> int:
|
137 |
return self.n_classes
|
138 |
+
|
139 |
+
_color_map = [[0, 255, 0], [0, 127, 0], [255, 255, 0], [255, 255, 255],
|
140 |
+
[255, 0, 0], [0, 0, 255], [0, 255, 255], [127, 127, 63]]
|
141 |
+
_m2f_name = "semantic_mask2former_swin_mapillary_converted"
|
142 |
+
dronescapes_task_types = { # some pre-baked representations
|
143 |
+
"rgb": ColorRepresentation("rgb", 3),
|
144 |
+
"hsv": HSVRepresentation("hsv", 3),
|
145 |
+
"edges_dexined": ColorRepresentation("edges_dexined", 1),
|
146 |
+
"depth_dpt": DepthRepresentation("depth_dpt", min_depth=0, max_depth=0.999),
|
147 |
+
"depth_sfm_manual202204": DepthRepresentation("depth_sfm_manual202204", min_depth=0, max_depth=300),
|
148 |
+
"normals_sfm_manual202204": NormalsRepresentation("normals_sfm_manual202204"),
|
149 |
+
"depth_ufo": DepthRepresentation("depth_ufo", min_depth=0, max_depth=1),
|
150 |
+
"opticalflow_rife": OpticalFlowRepresentation,
|
151 |
+
"semantic_segprop8": SemanticRepresentation("semantic_segprop8", classes=8, color_map=_color_map),
|
152 |
+
_m2f_name: SemanticRepresentation(_m2f_name, classes=8, color_map=_color_map),
|
153 |
+
"softseg_gb": ColorRepresentation("softseg_gb", 3),
|
154 |
+
"edges_gb": EdgesRepresentation("edges_gb"),
|
155 |
+
}
|
dronescapes_reader/multitask_dataset.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
#!/usr/bin/env python3
|
2 |
"""MultiTask Dataset module compatible with torch.utils.data.Dataset & DataLoader."""
|
3 |
from __future__ import annotations
|
|
|
4 |
from pathlib import Path
|
5 |
from typing import Dict, List, Tuple
|
6 |
from argparse import ArgumentParser
|
@@ -12,52 +13,12 @@ import numpy as np
|
|
12 |
from torch.utils.data import Dataset, DataLoader
|
13 |
from lovely_tensors import monkey_patch
|
14 |
|
|
|
|
|
15 |
monkey_patch()
|
16 |
BuildDatasetTuple = Tuple[Dict[str, List[Path]], List[str]]
|
17 |
MultiTaskItem = Tuple[Dict[str, tr.Tensor], str, List[str]] # [{task: data}, stem(name) | list[stem(name)], [tasks]]
|
18 |
-
|
19 |
-
|
20 |
-
class NpzRepresentation:
|
21 |
-
"""Generic Task with data read from/saved to npz files. Tries to read data as-is from disk and store it as well"""
|
22 |
-
def __init__(self, name: str):
|
23 |
-
self.name = name
|
24 |
-
|
25 |
-
def load_from_disk(self, path: Path) -> tr.Tensor:
|
26 |
-
"""Reads the npz data from the disk and transforms it properly"""
|
27 |
-
data = np.load(path, allow_pickle=False)
|
28 |
-
data = data if isinstance(data, np.ndarray) else data["arr_0"] # in case on npz, we need this as well
|
29 |
-
return tr.from_numpy(data) # can be uint8, float16, float32 etc.
|
30 |
-
|
31 |
-
def save_to_disk(self, data: tr.Tensor, path: Path):
|
32 |
-
"""stores this item to the disk which can then be loaded via `load_from_disk`"""
|
33 |
-
np.save(path, data.cpu().detach().numpy(), allow_pickle=False)
|
34 |
-
|
35 |
-
def plot_fn(self, x: tr.Tensor) -> np.ndarray:
|
36 |
-
"""very basic implementation of converting this representation to a viewable image. You should overwrite this"""
|
37 |
-
assert isinstance(x, tr.Tensor), type(x)
|
38 |
-
if len(x.shape) == 2:
|
39 |
-
x = x.unsqueeze(-1)
|
40 |
-
assert len(x.shape) == 3, x.shape # guaranteed to be (H, W, C) at this point
|
41 |
-
if x.shape[-1] != 3:
|
42 |
-
x = x[..., 0:1]
|
43 |
-
if x.shape[-1] == 1:
|
44 |
-
x = x.repeat(1, 1, 3)
|
45 |
-
x = x.nan_to_num(0).cpu().detach().numpy() # guaranteed to be (H, W, 3) at this point hopefully
|
46 |
-
_min, _max = x.min((0, 1), keepdims=True), x.max((0, 1), keepdims=True)
|
47 |
-
if x.dtype != np.uint8:
|
48 |
-
x = np.nan_to_num((x - _min) / (_max - _min) * 255, 0).astype(np.uint8)
|
49 |
-
return x
|
50 |
-
|
51 |
-
@property
|
52 |
-
def n_channels(self) -> int:
|
53 |
-
"""return the number of channels for this representation. Must be updated by each downstream representation"""
|
54 |
-
raise NotImplementedError(f"n_channels is not implemented for {self}")
|
55 |
-
|
56 |
-
def __repr__(self):
|
57 |
-
return str(self)
|
58 |
-
|
59 |
-
def __str__(self):
|
60 |
-
return f"{str(type(self)).split('.')[-1][0:-2]}({self.name})"
|
61 |
|
62 |
class MultiTaskDataset(Dataset):
|
63 |
"""
|
@@ -81,7 +42,8 @@ class MultiTaskDataset(Dataset):
|
|
81 |
|
82 |
def __init__(self, path: Path, task_names: list[str] | None = None, handle_missing_data: str = "fill_none",
|
83 |
files_suffix: str = "npz", task_types: dict[str, type] | None = None,
|
84 |
-
files_per_repr_overwrites: dict[str, str] | None = None
|
|
|
85 |
assert Path(path).exists(), f"Provided path '{path}' doesn't exist!"
|
86 |
assert handle_missing_data in ("drop", "fill_none", "fill_zero", "fill_nan"), \
|
87 |
f"Invalid handle_missing_data mode: {handle_missing_data}"
|
@@ -108,6 +70,7 @@ class MultiTaskDataset(Dataset):
|
|
108 |
self.name_to_task = {task.name: task for task in self.tasks}
|
109 |
logger.info(f"Tasks used in this dataset: {self.task_names}")
|
110 |
self._default_vals: dict[str, tr.Tensor] | None = None
|
|
|
111 |
|
112 |
# Public methods and properties
|
113 |
|
@@ -223,6 +186,43 @@ class MultiTaskDataset(Dataset):
|
|
223 |
assert len(files_per_repr) > 0
|
224 |
return files_per_repr, all_files
|
225 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
# Python magic methods (pretty printing the reader object, reader[0], len(reader) etc.)
|
227 |
|
228 |
def __getitem__(self, index: int | slice | list[int] | tuple) -> MultiTaskItem:
|
|
|
1 |
#!/usr/bin/env python3
|
2 |
"""MultiTask Dataset module compatible with torch.utils.data.Dataset & DataLoader."""
|
3 |
from __future__ import annotations
|
4 |
+
import os
|
5 |
from pathlib import Path
|
6 |
from typing import Dict, List, Tuple
|
7 |
from argparse import ArgumentParser
|
|
|
13 |
from torch.utils.data import Dataset, DataLoader
|
14 |
from lovely_tensors import monkey_patch
|
15 |
|
16 |
+
from npz_representation import NpzRepresentation
|
17 |
+
|
18 |
monkey_patch()
|
19 |
BuildDatasetTuple = Tuple[Dict[str, List[Path]], List[str]]
|
20 |
MultiTaskItem = Tuple[Dict[str, tr.Tensor], str, List[str]] # [{task: data}, stem(name) | list[stem(name)], [tasks]]
|
21 |
+
TaskStatistics = Tuple[tr.Tensor, tr.Tensor, tr.Tensor, tr.Tensor] # (min, max, mean, std)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
class MultiTaskDataset(Dataset):
|
24 |
"""
|
|
|
42 |
|
43 |
def __init__(self, path: Path, task_names: list[str] | None = None, handle_missing_data: str = "fill_none",
|
44 |
files_suffix: str = "npz", task_types: dict[str, type] | None = None,
|
45 |
+
files_per_repr_overwrites: dict[str, str] | None = None,
|
46 |
+
compute_statistics: bool = False):
|
47 |
assert Path(path).exists(), f"Provided path '{path}' doesn't exist!"
|
48 |
assert handle_missing_data in ("drop", "fill_none", "fill_zero", "fill_nan"), \
|
49 |
f"Invalid handle_missing_data mode: {handle_missing_data}"
|
|
|
70 |
self.name_to_task = {task.name: task for task in self.tasks}
|
71 |
logger.info(f"Tasks used in this dataset: {self.task_names}")
|
72 |
self._default_vals: dict[str, tr.Tensor] | None = None
|
73 |
+
self.statistics = None if compute_statistics is False else self._compute_statistics()
|
74 |
|
75 |
# Public methods and properties
|
76 |
|
|
|
186 |
assert len(files_per_repr) > 0
|
187 |
return files_per_repr, all_files
|
188 |
|
189 |
+
def _compute_statistics(self) -> dict[str, tr.Tensor]:
|
190 |
+
cache_path = self.path / f".task_statistics.npz"
|
191 |
+
res: dict[str, TaskStatistics] = {}
|
192 |
+
if os.getenv("CACHE_IMG_STATS", "0") == "1" and cache_path.exists():
|
193 |
+
res = np.load(cache_path, allow_pickle=True)["arr_0"].item()
|
194 |
+
logger.info(f"Loaded task statistics: { {k: v.shape for k, v in res.items()} }")
|
195 |
+
missing_tasks = list(set(self.task_names).difference(res.keys()))
|
196 |
+
if len(missing_tasks) == 0:
|
197 |
+
return res
|
198 |
+
logger.info(f"Computing global task statistics (dataset len {len(self)}) for {missing_tasks}")
|
199 |
+
old_tasks = self.tasks
|
200 |
+
self._tasks = [t for t in self.tasks if t.name in missing_tasks]
|
201 |
+
res = {**res, **self._compute_channel_level_stats(missing_tasks)}
|
202 |
+
self._tasks = old_tasks
|
203 |
+
logger.info(f"Computed task statistics: { {k: v[0].shape for k, v in res.items()} }")
|
204 |
+
if os.getenv("CACHE_IMG_STATS", "0") == "1":
|
205 |
+
np.savez(cache_path, res)
|
206 |
+
return res
|
207 |
+
|
208 |
+
def _compute_channel_level_stats(self, missing_tasks: list[str]) -> dict[str, TaskStatistics]:
|
209 |
+
ch = {k: v[-1] if len(v) == 3 else 1 for k, v in self.data_shape.items()}
|
210 |
+
sums = {task_name: tr.zeros(ch[task_name]).type(tr.float64) for task_name in missing_tasks}
|
211 |
+
counts = {task_name: tr.zeros(ch[task_name]).long() for task_name in missing_tasks}
|
212 |
+
mins = {task_name: tr.zeros(ch[task_name]).type(tr.float64) - 1<<31 for task_name in missing_tasks}
|
213 |
+
maxs = {task_name: tr.zeros(ch[task_name]).type(tr.float64) + 1<<31 for task_name in missing_tasks}
|
214 |
+
|
215 |
+
|
216 |
+
for ix in range(len(self)):
|
217 |
+
item = self.base_dataset[ix][0]
|
218 |
+
for task in missing_tasks:
|
219 |
+
item_flat_ch = item[task].reshape(-1, self.ch[task])
|
220 |
+
sums[task] += item_flat_ch.nan_to_num(0).type(tr.float64).sum(0)
|
221 |
+
counts[task] += (item_flat_ch == item_flat_ch).long().sum(0)
|
222 |
+
res_ch = {k: (sums[k] / counts[k]).nan_to_num(0).float() for k in missing_tasks}
|
223 |
+
res = {k: v.reshape(-1, 1, 1).repeat(1, self.h, self.w) for k, v in res_ch.items()}
|
224 |
+
return res
|
225 |
+
|
226 |
# Python magic methods (pretty printing the reader object, reader[0], len(reader) etc.)
|
227 |
|
228 |
def __getitem__(self, index: int | slice | list[int] | tuple) -> MultiTaskItem:
|
dronescapes_reader/npz_representation.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""MultiTask representations stored as .npz files on the disk"""
|
2 |
+
from __future__ import annotations
|
3 |
+
from pathlib import Path
|
4 |
+
import numpy as np
|
5 |
+
import torch as tr
|
6 |
+
|
7 |
+
class NpzRepresentation:
|
8 |
+
"""Generic Task with data read from/saved to npz files. Tries to read data as-is from disk and store it as well"""
|
9 |
+
def __init__(self, name: str):
|
10 |
+
self.name = name
|
11 |
+
|
12 |
+
def load_from_disk(self, path: Path) -> tr.Tensor:
|
13 |
+
"""Reads the npz data from the disk and transforms it properly"""
|
14 |
+
data = np.load(path, allow_pickle=False)
|
15 |
+
data = data if isinstance(data, np.ndarray) else data["arr_0"] # in case on npz, we need this as well
|
16 |
+
return tr.from_numpy(data) # can be uint8, float16, float32 etc.
|
17 |
+
|
18 |
+
def save_to_disk(self, data: tr.Tensor, path: Path):
|
19 |
+
"""stores this item to the disk which can then be loaded via `load_from_disk`"""
|
20 |
+
np.save(path, data.cpu().detach().numpy(), allow_pickle=False)
|
21 |
+
|
22 |
+
def plot_fn(self, x: tr.Tensor) -> np.ndarray:
|
23 |
+
"""very basic implementation of converting this representation to a viewable image. You should overwrite this"""
|
24 |
+
assert isinstance(x, tr.Tensor), type(x)
|
25 |
+
if len(x.shape) == 2:
|
26 |
+
x = x.unsqueeze(-1)
|
27 |
+
assert len(x.shape) == 3, x.shape # guaranteed to be (H, W, C) at this point
|
28 |
+
if x.shape[-1] != 3:
|
29 |
+
x = x[..., 0:1]
|
30 |
+
if x.shape[-1] == 1:
|
31 |
+
x = x.repeat(1, 1, 3)
|
32 |
+
x = x.nan_to_num(0).cpu().detach().numpy() # guaranteed to be (H, W, 3) at this point hopefully
|
33 |
+
_min, _max = x.min((0, 1), keepdims=True), x.max((0, 1), keepdims=True)
|
34 |
+
if x.dtype != np.uint8:
|
35 |
+
x = np.nan_to_num((x - _min) / (_max - _min) * 255, 0).astype(np.uint8)
|
36 |
+
return x
|
37 |
+
|
38 |
+
def normalize(self, x: tr.Tensor, x_min: tr.Tensor, x_max: tr.Tensor) -> tr.Tensor:
|
39 |
+
"""normalizes a data point read with self.load_from_disk(path) using external min/max information"""
|
40 |
+
return ((x - x_max) / (x_max - x_min)).nan_to_num(0, 0, 0)
|
41 |
+
|
42 |
+
def standardize(self, x: tr.Tensor, x_mean: tr.Tensor, x_std: tr.Tensor) -> tr.Tensor:
|
43 |
+
"""standardizes a data point read with self.load_from_disk(path) using external min/max information"""
|
44 |
+
return ((x - x_mean) / x_std).nan_to_num(0, 0, 0)
|
45 |
+
|
46 |
+
@property
|
47 |
+
def n_channels(self) -> int:
|
48 |
+
"""return the number of channels for this representation. Must be updated by each downstream representation"""
|
49 |
+
raise NotImplementedError(f"n_channels is not implemented for {self}")
|
50 |
+
|
51 |
+
def __repr__(self):
|
52 |
+
return str(self)
|
53 |
+
|
54 |
+
def __str__(self):
|
55 |
+
return f"{str(type(self)).split('.')[-1][0:-2]}({self.name})"
|
scripts/dronescapes_viewer.ipynb
CHANGED
@@ -4,14 +4,28 @@
|
|
4 |
"cell_type": "code",
|
5 |
"execution_count": 1,
|
6 |
"metadata": {},
|
7 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
"source": [
|
9 |
"import sys\n",
|
|
|
10 |
"from pathlib import Path\n",
|
11 |
"from pprint import pprint\n",
|
12 |
"import random\n",
|
13 |
-
"
|
14 |
-
"from dronescapes_reader import
|
15 |
"import numpy as np\n",
|
16 |
"from media_processing_lib.collage_maker import collage_fn\n",
|
17 |
"from media_processing_lib.image import image_add_title, image_write\n",
|
@@ -140,7 +154,7 @@
|
|
140 |
"name": "python",
|
141 |
"nbconvert_exporter": "python",
|
142 |
"pygments_lexer": "ipython3",
|
143 |
-
"version": "3.
|
144 |
}
|
145 |
},
|
146 |
"nbformat": 4,
|
|
|
4 |
"cell_type": "code",
|
5 |
"execution_count": 1,
|
6 |
"metadata": {},
|
7 |
+
"outputs": [
|
8 |
+
{
|
9 |
+
"ename": "ModuleNotFoundError",
|
10 |
+
"evalue": "No module named 'npz_representation'",
|
11 |
+
"output_type": "error",
|
12 |
+
"traceback": [
|
13 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
14 |
+
"\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
|
15 |
+
"Cell \u001b[0;32mIn[1], line 7\u001b[0m\n\u001b[1;32m 5\u001b[0m sys\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39mappend(Path\u001b[38;5;241m.\u001b[39mcwd()\u001b[38;5;241m.\u001b[39mparent\u001b[38;5;241m.\u001b[39m\u001b[38;5;21m__str__\u001b[39m())\n\u001b[1;32m 6\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mdronescapes_reader\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m MultiTaskDataset\n\u001b[0;32m----> 7\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mdronescapes_reader\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mdronescapes_representations\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m dronescapes_task_types\n\u001b[1;32m 8\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mnumpy\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mnp\u001b[39;00m\n\u001b[1;32m 9\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mmedia_processing_lib\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mcollage_maker\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m collage_fn\n",
|
16 |
+
"File \u001b[0;32m~/data/dronescapes/dronescapes_reader/dronescapes_representations.py:12\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mmatplotlib\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mcm\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m hot \u001b[38;5;66;03m# pylint: disable=no-name-in-module\u001b[39;00m\n\u001b[1;32m 10\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mnn\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m functional \u001b[38;5;28;01mas\u001b[39;00m F\n\u001b[0;32m---> 12\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mnpz_representation\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m NpzRepresentation\n\u001b[1;32m 14\u001b[0m \u001b[38;5;28;01mclass\u001b[39;00m \u001b[38;5;21;01mColorRepresentation\u001b[39;00m(NpzRepresentation):\n\u001b[1;32m 15\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__init__\u001b[39m(\u001b[38;5;28mself\u001b[39m, name: \u001b[38;5;28mstr\u001b[39m, n_channels: \u001b[38;5;28mint\u001b[39m):\n",
|
17 |
+
"\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'npz_representation'"
|
18 |
+
]
|
19 |
+
}
|
20 |
+
],
|
21 |
"source": [
|
22 |
"import sys\n",
|
23 |
+
"sys.path.append(Path.cwd().parent.__str__())\n",
|
24 |
"from pathlib import Path\n",
|
25 |
"from pprint import pprint\n",
|
26 |
"import random\n",
|
27 |
+
"from dronescapes_reader import MultiTaskDataset\n",
|
28 |
+
"from dronescapes_reader.dronescapes_representations import dronescapes_task_types\n",
|
29 |
"import numpy as np\n",
|
30 |
"from media_processing_lib.collage_maker import collage_fn\n",
|
31 |
"from media_processing_lib.image import image_add_title, image_write\n",
|
|
|
154 |
"name": "python",
|
155 |
"nbconvert_exporter": "python",
|
156 |
"pygments_lexer": "ipython3",
|
157 |
+
"version": "3.11.9"
|
158 |
}
|
159 |
},
|
160 |
"nbformat": 4,
|
scripts/dronescapes_viewer.py
CHANGED
@@ -2,7 +2,8 @@
|
|
2 |
import sys
|
3 |
from pathlib import Path
|
4 |
sys.path.append(Path(__file__).parents[1].__str__())
|
5 |
-
from dronescapes_reader import MultiTaskDataset
|
|
|
6 |
from pprint import pprint
|
7 |
from torch.utils.data import DataLoader
|
8 |
import random
|
|
|
2 |
import sys
|
3 |
from pathlib import Path
|
4 |
sys.path.append(Path(__file__).parents[1].__str__())
|
5 |
+
from dronescapes_reader import MultiTaskDataset
|
6 |
+
from dronescapes_reader.dronescapes_representations import dronescapes_task_types
|
7 |
from pprint import pprint
|
8 |
from torch.utils.data import DataLoader
|
9 |
import random
|