deleted semantics statistics (useless) and updated the reader with various fixes
Browse files
data/train_set/.task_statistics.npz
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ab8250be8db0b0cbadb587271ea704c8e9e27bab25954d02d2fe4bd0a3510870
|
3 |
+
size 16354
|
dronescapes_reader/multitask_dataset.py
CHANGED
@@ -106,10 +106,8 @@ class MultiTaskDataset(Dataset):
|
|
106 |
self._statistics = None if normalization is None else self._compute_statistics()
|
107 |
if self._statistics is not None:
|
108 |
for task_name, task in self.name_to_task.items():
|
109 |
-
|
110 |
task.set_normalization(self.normalization[task_name], self._statistics[task_name])
|
111 |
-
except:
|
112 |
-
breakpoint()
|
113 |
|
114 |
# Public methods and properties
|
115 |
|
@@ -120,11 +118,9 @@ class MultiTaskDataset(Dataset):
|
|
120 |
@property
|
121 |
def default_vals(self) -> dict[str, tr.Tensor]:
|
122 |
"""default values for __getitem__ if item is not on disk but we retrieve a full batch anyway"""
|
123 |
-
if self.
|
124 |
-
|
125 |
-
|
126 |
-
tr.full(self.data_shape[task], _default_val) for task in self.task_names}
|
127 |
-
return self._default_vals
|
128 |
|
129 |
@property
|
130 |
def data_shape(self) -> dict[str, tuple[int, ...]]:
|
@@ -291,30 +287,27 @@ class MultiTaskDataset(Dataset):
|
|
291 |
assert not new_mean.isnan().any() and not new_M2.isnan().any(), (mean, new_mean, counts, counts_delta)
|
292 |
return new_count, new_mean, new_M2
|
293 |
|
|
|
294 |
ch = {k: v[-1] if len(v) == 3 else 1 for k, v in self.data_shape.items()}
|
295 |
-
counts = {task_name: tr.zeros(ch[task_name]).long() for task_name in
|
296 |
-
mins = {task_name: tr.zeros(ch[task_name]).type(tr.float64) + 10**10 for task_name in
|
297 |
-
maxs = {task_name: tr.zeros(ch[task_name]).type(tr.float64) - 10**10 for task_name in
|
298 |
-
means_vec = {task_name: tr.zeros(ch[task_name]).type(tr.float64) for task_name in
|
299 |
-
M2s_vec = {task_name: tr.zeros(ch[task_name]).type(tr.float64) for task_name in
|
300 |
|
301 |
old_names, old_normalization = self.task_names, self.normalization
|
302 |
-
|
303 |
-
self.task_names, self.normalization = missing_tasks_no_classification, None # for self[ix]
|
304 |
|
305 |
-
|
306 |
-
|
307 |
-
res[task] = (mins[task] * 0, mins[task] * 0 + 1, mins[task] * 0, mins[task] * 0 + 1)
|
308 |
-
|
309 |
-
if len(missing_tasks_no_classification) == 0:
|
310 |
-
return res
|
311 |
|
|
|
312 |
BS = min(len(self), self.batch_size_stats)
|
313 |
n = (len(self) // BS) + (len(self) % BS != 0)
|
314 |
logger.debug(f"Global task statistics. Batch size: {BS}. N iterations: {n}.")
|
315 |
for ix in trange(n, disable=os.getenv("STATS_PBAR", "0") == "0", desc="Computing stats"):
|
316 |
item = self[ix * BS: min(len(self), (ix + 1) * BS)][0]
|
317 |
-
for task in
|
318 |
item_flat_ch = item[task].reshape(-1, ch[task])
|
319 |
item_no_nan = item_flat_ch.nan_to_num(0).type(tr.float64)
|
320 |
mins[task] = tr.minimum(mins[task], item_no_nan.min(0)[0])
|
@@ -323,7 +316,7 @@ class MultiTaskDataset(Dataset):
|
|
323 |
counts[task], means_vec[task], M2s_vec[task] = \
|
324 |
update(counts[task], counts_delta, means_vec[task], M2s_vec[task], item_no_nan)
|
325 |
|
326 |
-
for task in
|
327 |
res[task] = (mins[task], maxs[task], means_vec[task], (M2s_vec[task] / counts[task]).sqrt())
|
328 |
assert not any(x[0].isnan().any() for x in res[task]), (task, res[task])
|
329 |
self.task_names, self.normalization = old_names, old_normalization
|
@@ -356,11 +349,7 @@ class MultiTaskDataset(Dataset):
|
|
356 |
for task_name in self.task_names:
|
357 |
task = [t for t in self.tasks if t.name == task_name][0]
|
358 |
file_path = self.files_per_repr[task_name][index]
|
359 |
-
if file_path is None
|
360 |
-
# TODO: I had a .resolve() and .exists() here? WTF? To fix in _build_dataset() maybe.
|
361 |
-
res[task_name] = self.default_vals[task_name]
|
362 |
-
else:
|
363 |
-
res[task_name] = task.load_from_disk(file_path)
|
364 |
if not task.is_classification:
|
365 |
if self.normalization is not None and self.normalization[task_name] == "min_max":
|
366 |
res[task_name] = task.normalize(res[task_name])
|
|
|
106 |
self._statistics = None if normalization is None else self._compute_statistics()
|
107 |
if self._statistics is not None:
|
108 |
for task_name, task in self.name_to_task.items():
|
109 |
+
if not task.is_classification:
|
110 |
task.set_normalization(self.normalization[task_name], self._statistics[task_name])
|
|
|
|
|
111 |
|
112 |
# Public methods and properties
|
113 |
|
|
|
118 |
@property
|
119 |
def default_vals(self) -> dict[str, tr.Tensor]:
|
120 |
"""default values for __getitem__ if item is not on disk but we retrieve a full batch anyway"""
|
121 |
+
_default_val = float("nan") if self.handle_missing_data == "fill_nan" else 0
|
122 |
+
return {task: None if self.handle_missing_data == "fill_none" else tr.full(self.data_shape[task], _default_val)
|
123 |
+
for task in self.task_names}
|
|
|
|
|
124 |
|
125 |
@property
|
126 |
def data_shape(self) -> dict[str, tuple[int, ...]]:
|
|
|
287 |
assert not new_mean.isnan().any() and not new_M2.isnan().any(), (mean, new_mean, counts, counts_delta)
|
288 |
return new_count, new_mean, new_M2
|
289 |
|
290 |
+
missing_tasks_no_classif = [t for t in missing_tasks if not self.name_to_task[t].is_classification]
|
291 |
ch = {k: v[-1] if len(v) == 3 else 1 for k, v in self.data_shape.items()}
|
292 |
+
counts = {task_name: tr.zeros(ch[task_name]).long() for task_name in missing_tasks_no_classif}
|
293 |
+
mins = {task_name: tr.zeros(ch[task_name]).type(tr.float64) + 10**10 for task_name in missing_tasks_no_classif}
|
294 |
+
maxs = {task_name: tr.zeros(ch[task_name]).type(tr.float64) - 10**10 for task_name in missing_tasks_no_classif}
|
295 |
+
means_vec = {task_name: tr.zeros(ch[task_name]).type(tr.float64) for task_name in missing_tasks_no_classif}
|
296 |
+
M2s_vec = {task_name: tr.zeros(ch[task_name]).type(tr.float64) for task_name in missing_tasks_no_classif}
|
297 |
|
298 |
old_names, old_normalization = self.task_names, self.normalization
|
299 |
+
self.task_names, self.normalization = missing_tasks_no_classif, None # for self[ix]
|
|
|
300 |
|
301 |
+
if len(missing_tasks_no_classif) == 0:
|
302 |
+
return {}
|
|
|
|
|
|
|
|
|
303 |
|
304 |
+
res = {}
|
305 |
BS = min(len(self), self.batch_size_stats)
|
306 |
n = (len(self) // BS) + (len(self) % BS != 0)
|
307 |
logger.debug(f"Global task statistics. Batch size: {BS}. N iterations: {n}.")
|
308 |
for ix in trange(n, disable=os.getenv("STATS_PBAR", "0") == "0", desc="Computing stats"):
|
309 |
item = self[ix * BS: min(len(self), (ix + 1) * BS)][0]
|
310 |
+
for task in missing_tasks_no_classif:
|
311 |
item_flat_ch = item[task].reshape(-1, ch[task])
|
312 |
item_no_nan = item_flat_ch.nan_to_num(0).type(tr.float64)
|
313 |
mins[task] = tr.minimum(mins[task], item_no_nan.min(0)[0])
|
|
|
316 |
counts[task], means_vec[task], M2s_vec[task] = \
|
317 |
update(counts[task], counts_delta, means_vec[task], M2s_vec[task], item_no_nan)
|
318 |
|
319 |
+
for task in missing_tasks_no_classif:
|
320 |
res[task] = (mins[task], maxs[task], means_vec[task], (M2s_vec[task] / counts[task]).sqrt())
|
321 |
assert not any(x[0].isnan().any() for x in res[task]), (task, res[task])
|
322 |
self.task_names, self.normalization = old_names, old_normalization
|
|
|
349 |
for task_name in self.task_names:
|
350 |
task = [t for t in self.tasks if t.name == task_name][0]
|
351 |
file_path = self.files_per_repr[task_name][index]
|
352 |
+
res[task_name] = self.default_vals[task_name] if file_path is None else task.load_from_disk(file_path)
|
|
|
|
|
|
|
|
|
353 |
if not task.is_classification:
|
354 |
if self.normalization is not None and self.normalization[task_name] == "min_max":
|
355 |
res[task_name] = task.normalize(res[task_name])
|