added old evaluation script
Browse files- .gitignore +1 -0
- scripts/eval_script_old.py +189 -0
.gitignore
CHANGED
@@ -15,4 +15,5 @@ commands.txt
|
|
15 |
raw_data/npz_540p_2/
|
16 |
here.csv
|
17 |
*.ttf
|
|
|
18 |
|
|
|
15 |
raw_data/npz_540p_2/
|
16 |
here.csv
|
17 |
*.ttf
|
18 |
+
scripts/results/
|
19 |
|
scripts/eval_script_old.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
The old evaluation script.
|
3 |
+
To run, you first need to split the test scenes data into 3 different directories:
|
4 |
+
|
5 |
+
cd /dronescapes/data
|
6 |
+
scenes=(comana barsana norway);
|
7 |
+
for scene in ${scenes[@]} ; do
|
8 |
+
ls test_set_annotated_only | while read task; do
|
9 |
+
mkdir -p test_set_annotated_only_per_scene/$scene/$task;
|
10 |
+
ls test_set_annotated_only/$task | grep "$scene" | while read line; do
|
11 |
+
cp test_set_annotated_only/$task/$line test_set_annotated_only_per_scene/$scene/$task/$line;
|
12 |
+
done;
|
13 |
+
done
|
14 |
+
done
|
15 |
+
|
16 |
+
Then run this:
|
17 |
+
cd /dronescapes/scripts
|
18 |
+
python eval_script_old.py --gt_path ../data/test_set_annotated_only_per_scene/comana/semantic_segprop8/ --pred_path ../data/test_set_annotated_only_per_scene/comana/semantic_mask2former_swin_mapillary_converted/ --num_classes 8 -o results/comana --overwrite
|
19 |
+
python eval_script_old.py --gt_path ../data/test_set_annotated_only_per_scene/barsana/semantic_segprop8/ --pred_path ../data/test_set_annotated_only_per_scene/barsana/semantic_mask2former_swin_mapillary_converted/ --num_classes 8 -o results/barsana --overwrite
|
20 |
+
python eval_script_old.py --gt_path ../data/test_set_annotated_only_per_scene/norway/semantic_segprop8/ --pred_path ../data/test_set_annotated_only_per_scene/norway/semantic_mask2former_swin_mapillary_converted/ --num_classes 8 -o results/norway --overwrite
|
21 |
+
"""
|
22 |
+
|
23 |
+
from __future__ import annotations
|
24 |
+
import os
|
25 |
+
import cv2
|
26 |
+
import numpy as np
|
27 |
+
import multiprocessing as mp
|
28 |
+
from natsort import natsorted
|
29 |
+
from pathlib import Path
|
30 |
+
import shutil
|
31 |
+
import tempfile
|
32 |
+
from tqdm import tqdm
|
33 |
+
|
34 |
+
import argparse
|
35 |
+
import warnings
|
36 |
+
warnings.filterwarnings("ignore")
|
37 |
+
|
38 |
+
def convert_label2multi(label, class_id):
|
39 |
+
out = np.zeros((label.shape[0], label.shape[1]), dtype=np.uint8)
|
40 |
+
data_indices = np.where(np.equal(label, class_id))
|
41 |
+
out[data_indices[0], data_indices[1]] = 1
|
42 |
+
return np.array(out, dtype=bool)
|
43 |
+
|
44 |
+
def process_all_video_frames(gt_files: list[Path], pred_files: list[Path], class_id: int):
|
45 |
+
global_true_positives = 0
|
46 |
+
global_true_negatives = 0
|
47 |
+
global_false_positives = 0
|
48 |
+
global_false_negatives = 0
|
49 |
+
|
50 |
+
for gt_file, pred_file in tqdm(zip(gt_files, pred_files), total=len(gt_files), desc=f"{class_id=}"):
|
51 |
+
gt_label = np.load(gt_file, allow_pickle=True)["arr_0"]
|
52 |
+
net_label = np.load(pred_file, allow_pickle=True)["arr_0"]
|
53 |
+
|
54 |
+
if gt_label.shape == ():
|
55 |
+
gt_label = gt_label.item()['data']
|
56 |
+
gt_label = convert_label2multi(gt_label, class_id)
|
57 |
+
net_label = convert_label2multi(net_label, class_id)
|
58 |
+
|
59 |
+
true_positives = np.count_nonzero(gt_label * net_label)
|
60 |
+
true_negatives = np.count_nonzero((gt_label + net_label) == 0)
|
61 |
+
false_positives = np.count_nonzero((np.array(net_label, dtype=int) - np.array(gt_label, dtype=int)) > 0)
|
62 |
+
false_negatives = np.count_nonzero((np.array(gt_label, dtype=int) - np.array(net_label, dtype=int)) > 0)
|
63 |
+
|
64 |
+
global_true_positives += true_positives
|
65 |
+
global_true_negatives += true_negatives
|
66 |
+
global_false_positives += false_positives
|
67 |
+
global_false_negatives += false_negatives
|
68 |
+
|
69 |
+
global_precision = global_true_positives / (global_true_positives + global_false_positives + np.spacing(1))
|
70 |
+
global_recall = global_true_positives / (global_true_positives + global_false_negatives + np.spacing(1))
|
71 |
+
global_f1_score = (2 * global_precision * global_recall) / (global_precision + global_recall + np.spacing(1))
|
72 |
+
global_iou = global_true_positives / (global_true_positives + global_false_positives + global_false_negatives + np.spacing(1))
|
73 |
+
|
74 |
+
return (global_precision, global_recall, global_f1_score, global_iou)
|
75 |
+
|
76 |
+
def join_results(args: argparse.Namespace):
|
77 |
+
assert args.num_classes in (7, 8, 10), args.num_classes
|
78 |
+
if args.num_classes == 7:
|
79 |
+
CLASS_NAMES = ['land', 'forest', 'residential', 'road', 'little-objects', 'water', 'sky']
|
80 |
+
CLASS_WEIGHTS = [0.28172092, 0.37426183, 0.13341699, 0.05937348, 0.00474491, 0.05987466, 0.08660721]
|
81 |
+
#[0.37426183 0.28172092 0.13341699 0.08660721 0.05987466 0.05937348 0.00474491]
|
82 |
+
elif args.num_classes == 8:
|
83 |
+
CLASS_NAMES = ['land', 'forest', 'residential', 'road', 'little-objects', 'water', 'sky', 'hill']
|
84 |
+
CLASS_WEIGHTS = [0.28172092, 0.30589653, 0.13341699, 0.05937348, 0.00474491, 0.05987466, 0.08660721, 0.06836531]
|
85 |
+
#[0.30589653 0.28172092 0.13341699 0.08660721 0.06836531 0.05987466 0.05937348 0.00474491]
|
86 |
+
elif args.num_classes == 10:
|
87 |
+
CLASS_NAMES = ['land', 'forest', 'low-level', 'road', 'high-level', 'cars', 'water', 'sky', 'hill', 'person']
|
88 |
+
CLASS_WEIGHTS = [0.28172092, 0.30589653, 0.09954808, 0.05937348, 0.03386891, 0.00445865, 0.05987466, 0.08660721, 0.06836531, 0.00028626]
|
89 |
+
# [0.30589653 0.28172092 0.09954808 0.08660721 0.06836531 0.05987466 0.05937348 0.03386891 0.00445865 0.00028626]
|
90 |
+
|
91 |
+
|
92 |
+
out_path = os.path.join(args.out_dir, 'joined_results_' + str(args.num_classes) + 'classes.txt')
|
93 |
+
out_file = open(out_path, 'w')
|
94 |
+
|
95 |
+
joined_f1_scores_mean = []
|
96 |
+
joined_iou_scores_mean = []
|
97 |
+
|
98 |
+
for CLASS_ID in range(0, len(CLASS_NAMES)):
|
99 |
+
|
100 |
+
RESULT_FILE = os.path.join(args.out_dir, 'evaluation_dronescapes_CLASS_' + str(CLASS_ID) + '.txt')
|
101 |
+
|
102 |
+
result_file_lines = open(RESULT_FILE, 'r').read().splitlines()
|
103 |
+
|
104 |
+
for idx, line in enumerate(result_file_lines):
|
105 |
+
if idx != 0:
|
106 |
+
splits = line.split(',')
|
107 |
+
f1_score = float(splits[2])
|
108 |
+
iou_score = float(splits[3])
|
109 |
+
|
110 |
+
out_file.write('------------------------- ' + ' CLASS ' + str(CLASS_ID) + ' - ' + CLASS_NAMES[CLASS_ID] + ' --------------------------------------------\n')
|
111 |
+
# F1Score
|
112 |
+
out_file.write('F1-Score: ' + str(round(f1_score, 4)) + '\n')
|
113 |
+
# Mean IOU
|
114 |
+
out_file.write('IOU: ' + str(round(iou_score, 4)) + '\n')
|
115 |
+
out_file.write('\n\n')
|
116 |
+
joined_f1_scores_mean.append(f1_score)
|
117 |
+
joined_iou_scores_mean.append(iou_score)
|
118 |
+
|
119 |
+
out_file.write('\n\n')
|
120 |
+
out_file.write('Mean F1-Score all classes: ' + str(round(np.mean(joined_f1_scores_mean), 4)) + '\n')
|
121 |
+
out_file.write('Mean IOU all classes: ' + str(round(np.mean(joined_iou_scores_mean), 4)) + '\n')
|
122 |
+
out_file.write('\n\n')
|
123 |
+
|
124 |
+
out_file.write('\n\n')
|
125 |
+
out_file.write('Weighted Mean F1-Score all classes: ' + str(round(np.sum(np.dot(joined_f1_scores_mean, CLASS_WEIGHTS)), 4)) + '\n')
|
126 |
+
out_file.write('Weighted Mean IOU all classes: ' + str(round(np.sum(np.dot(joined_iou_scores_mean, CLASS_WEIGHTS)), 4)) + '\n')
|
127 |
+
out_file.write('\n\n')
|
128 |
+
|
129 |
+
out_file.close()
|
130 |
+
print(f"Written to '{out_path}'")
|
131 |
+
|
132 |
+
def main(args: argparse.Namespace):
|
133 |
+
gt_files = natsorted([x for x in args.gt_path.iterdir()], key=lambda x: Path(x).name)
|
134 |
+
pred_files = natsorted([x for x in args.pred_path.iterdir()], key=lambda x: Path(x).name)
|
135 |
+
assert all(Path(x).exists() for x in [*gt_files, *pred_files])
|
136 |
+
global_precision, global_recall, global_f1, global_iou = process_all_video_frames(gt_files, pred_files, args.class_id)
|
137 |
+
|
138 |
+
out_path = os.path.join(args.out_dir, 'evaluation_dronescapes_CLASS_' + str(args.class_id) + '.txt')
|
139 |
+
out_file = open(out_path, 'w')
|
140 |
+
out_file.write('precision,recall,f1,iou\n')
|
141 |
+
out_file.write('{0:.6f},{1:.6f},{2:.6f},{3:.6f}\n'.format(global_precision, global_recall, global_f1, global_iou))
|
142 |
+
out_file.close()
|
143 |
+
print(f"Written to '{out_path}'")
|
144 |
+
|
145 |
+
if __name__ == "__main__":
|
146 |
+
"""
|
147 |
+
Barsana: /Date3/hpc/datasets/dronescapes/all_scenes/dataset_splits/20220517_train_on_even_semisup_on_odd_validate_on_last_odd_triplet_journal_split/only_manually_annotated_test_files_36.txt
|
148 |
+
Norce: /Date3/hpc/datasets/dronescapes/all_scenes/dataset_splits/20220810_new_norce_clip/only_manually_annotated_test_files_50.txt
|
149 |
+
Comana: /Date3/hpc/datasets/dronescapes/all_scenes/dataset_splits/20221208_new_comana_clip/only_manually_annotated_test_files_30.txt
|
150 |
+
gt_path: /Date3/hpc/datasets/dronescapes/all_scenes
|
151 |
+
pred_path/Date3/hpc/code/Mask2Former/demo_dronescapes/outputs_dronescapes_compatible/mapillary_sseg
|
152 |
+
"""
|
153 |
+
parser = argparse.ArgumentParser()
|
154 |
+
parser.add_argument("--gt_path", type=Path, required=True)
|
155 |
+
parser.add_argument("--pred_path", type=Path, required=True)
|
156 |
+
parser.add_argument("--out_dir", "-o", required=True, type=Path, default=Path(__file__).parent / "out_dir")
|
157 |
+
parser.add_argument("--num_classes", type=int, default=8)
|
158 |
+
parser.add_argument("--txt_path")
|
159 |
+
parser.add_argument("--overwrite", action="store_true")
|
160 |
+
args = parser.parse_args()
|
161 |
+
assert not args.out_dir.exists() or args.overwrite, f"'{args.out_dir}' exists. Use --overwrite"
|
162 |
+
shutil.rmtree(args.out_dir, ignore_errors=True)
|
163 |
+
os.makedirs(args.out_dir, exist_ok=True)
|
164 |
+
|
165 |
+
if args.txt_path is not None:
|
166 |
+
(tempdir := Path(tempfile.TemporaryDirectory().name)).mkdir()
|
167 |
+
(tempdir / "gt").mkdir()
|
168 |
+
(tempdir / "pred").mkdir()
|
169 |
+
print(f"old pattern detected. Copying files to a temp dir: {tempdir}")
|
170 |
+
|
171 |
+
test_files = natsorted(open(args.txt_path, "r").read().splitlines())
|
172 |
+
scenes = natsorted(set(([os.path.dirname(x) for x in test_files])))
|
173 |
+
assert len(scenes) == 1, scenes
|
174 |
+
files = natsorted([x for x in test_files if scenes[0] in x])
|
175 |
+
gt_files = [f"{args.gt_path}/{f.split('/')[0]}/segprop{args.num_classes}/{f.split('/')[1]}.npz" for f in files]
|
176 |
+
pred_files = [f"{args.pred_path}/{f.split('/')[0]}/{int(f.split('/')[1]):06}.npz" for f in files]
|
177 |
+
assert all(Path(x).exists() for x in [*gt_files, *pred_files])
|
178 |
+
for _file in gt_files:
|
179 |
+
os.symlink(_file, tempdir / "gt" / Path(_file).name)
|
180 |
+
for _file in pred_files:
|
181 |
+
os.symlink(_file, tempdir / "pred" / Path(_file).name)
|
182 |
+
args.gt_path = tempdir / "gt"
|
183 |
+
args.pred_path = tempdir / "pred"
|
184 |
+
args.txt_path = None
|
185 |
+
|
186 |
+
for class_id in range(args.num_classes):
|
187 |
+
args.class_id = class_id
|
188 |
+
main(args)
|
189 |
+
join_results(args)
|