small update to the scripts
Browse files
dronescapes_reader/multitask_dataset.py
CHANGED
@@ -76,7 +76,8 @@ class MultiTaskDataset(Dataset):
|
|
76 |
self.path = Path(path).absolute()
|
77 |
self.handle_missing_data = handle_missing_data
|
78 |
self.suffix = files_suffix
|
79 |
-
self.
|
|
|
80 |
if task_types is None:
|
81 |
logger.debug("No explicit task types. Defaulting all of them to NpzRepresentation.")
|
82 |
task_types = {}
|
@@ -150,7 +151,7 @@ class MultiTaskDataset(Dataset):
|
|
150 |
return in_files
|
151 |
|
152 |
def _build_dataset_drop(self) -> BuildDatasetTuple:
|
153 |
-
in_files = self.
|
154 |
name_to_node_path = {k: {_v.name: _v for _v in v} for k, v in in_files.items()} # {node: {name: path}}
|
155 |
common = set(x.name for x in next(iter(in_files.values())))
|
156 |
nodes = in_files.keys()
|
@@ -164,7 +165,7 @@ class MultiTaskDataset(Dataset):
|
|
164 |
return files_per_repr, common
|
165 |
|
166 |
def _build_dataset_fill_none(self) -> BuildDatasetTuple:
|
167 |
-
in_files = self.
|
168 |
name_to_node_path = {k: {_v.name: _v for _v in v} for k, v in in_files.items()}
|
169 |
all_files = set(x.name for x in next(iter(in_files.values())))
|
170 |
nodes = in_files.keys()
|
|
|
76 |
self.path = Path(path).absolute()
|
77 |
self.handle_missing_data = handle_missing_data
|
78 |
self.suffix = files_suffix
|
79 |
+
self.all_files_per_repr = self._get_all_npz_files()
|
80 |
+
self.files_per_repr, self.file_names = self._build_dataset() # these are filtered by 'drop' or 'fill_none' logic
|
81 |
if task_types is None:
|
82 |
logger.debug("No explicit task types. Defaulting all of them to NpzRepresentation.")
|
83 |
task_types = {}
|
|
|
151 |
return in_files
|
152 |
|
153 |
def _build_dataset_drop(self) -> BuildDatasetTuple:
|
154 |
+
in_files = self.all_files_per_repr
|
155 |
name_to_node_path = {k: {_v.name: _v for _v in v} for k, v in in_files.items()} # {node: {name: path}}
|
156 |
common = set(x.name for x in next(iter(in_files.values())))
|
157 |
nodes = in_files.keys()
|
|
|
165 |
return files_per_repr, common
|
166 |
|
167 |
def _build_dataset_fill_none(self) -> BuildDatasetTuple:
|
168 |
+
in_files = self.all_files_per_repr
|
169 |
name_to_node_path = {k: {_v.name: _v for _v in v} for k, v in in_files.items()}
|
170 |
all_files = set(x.name for x in next(iter(in_files.values())))
|
171 |
nodes = in_files.keys()
|
scripts/evaluate_semantic_segmentation.py
CHANGED
@@ -25,7 +25,7 @@ def compute_metrics(tp: np.ndarray, fp: np.ndarray, tn: np.ndarray, fn: np.ndarr
|
|
25 |
iou = tp / (tp + fp + fn)
|
26 |
return pd.DataFrame([precision, recall, f1, iou], index=["precision", "recall", "f1", "iou"]).T
|
27 |
|
28 |
-
def
|
29 |
df = df.query("class_name == @class_name").drop(columns="class_name")
|
30 |
df.loc["all"] = df.sum()
|
31 |
df[["precision", "recall", "f1", "iou"]] = compute_metrics(df["tp"], df["fp"], df["tn"], df["fn"])
|
@@ -33,7 +33,7 @@ def do_one_class(df: pd.DataFrame, class_name: str) -> pd.DataFrame:
|
|
33 |
df = df.fillna(0).round(3)
|
34 |
return df
|
35 |
|
36 |
-
def
|
37 |
res = tr.zeros((len(reader), 8, 4)).long() # (N, 8, 4)
|
38 |
index = []
|
39 |
for i in trange(len(reader)):
|
@@ -65,38 +65,45 @@ def get_args() -> Namespace:
|
|
65 |
parser.add_argument("--classes", required=True, nargs="+")
|
66 |
parser.add_argument("--class_weights", nargs="+", type=float)
|
67 |
parser.add_argument("--scenes", nargs="+", default=["all"], help="each scene will get separate metrics if provided")
|
|
|
68 |
args = parser.parse_args()
|
69 |
if args.class_weights is None:
|
|
|
70 |
args.class_weights = [1 / len(args.classes)] * len(args.classes)
|
71 |
assert (a := len(args.class_weights)) == (b := len(args.classes)), (a, b)
|
72 |
assert np.fabs(sum(args.class_weights) - 1) < 1e-3, (args.class_weights, sum(args.class_weights))
|
73 |
assert args.output_path.suffix == ".csv", f"Prediction file must end in .csv, got: '{args.output_path.suffix}'"
|
74 |
if len(args.scenes) > 0:
|
75 |
logger.info(f"Scenes: {args.scenes}")
|
|
|
|
|
76 |
return args
|
77 |
|
78 |
def main(args: Namespace):
|
79 |
-
|
80 |
-
temp_dir.mkdir(exist_ok=False)
|
81 |
os.symlink(args.y_dir, temp_dir / "pred")
|
82 |
os.symlink(args.gt_dir, temp_dir / "gt")
|
|
|
|
|
|
|
83 |
|
|
|
84 |
if not args.output_path.exists():
|
85 |
-
|
86 |
-
reader = MultiTaskDataset(temp_dir, handle_missing_data="drop", task_types={"pred": sema_repr, "gt": sema_repr})
|
87 |
-
raw_stats = compute_raw_stats_per_class(reader, args.classes)
|
88 |
logger.info(f"Stored raw metrics file to: '{args.output_path}'")
|
89 |
raw_stats.to_csv(args.output_path)
|
90 |
else:
|
91 |
logger.info(f"Loading raw metrics from: '{args.output_path}'. Delete this file if you want to recompute.")
|
92 |
raw_stats = pd.read_csv(args.output_path, index_col=0)
|
93 |
|
94 |
-
|
|
|
95 |
|
|
|
96 |
final_agg = []
|
97 |
-
for scene in args.scenes:
|
98 |
-
final_agg.append(compute_final_per_scene(metrics_per_class, scene,
|
99 |
-
class_weights=args.class_weights))
|
100 |
final_agg = pd.DataFrame(final_agg, columns=["scene", "iou", "f1"]).set_index("scene")
|
101 |
if len(args.scenes) > 1:
|
102 |
final_agg.loc["mean"] = final_agg.mean()
|
|
|
25 |
iou = tp / (tp + fp + fn)
|
26 |
return pd.DataFrame([precision, recall, f1, iou], index=["precision", "recall", "f1", "iou"]).T
|
27 |
|
28 |
+
def compute_metrics_by_class(df: pd.DataFrame, class_name: str) -> pd.DataFrame:
|
29 |
df = df.query("class_name == @class_name").drop(columns="class_name")
|
30 |
df.loc["all"] = df.sum()
|
31 |
df[["precision", "recall", "f1", "iou"]] = compute_metrics(df["tp"], df["fp"], df["tn"], df["fn"])
|
|
|
33 |
df = df.fillna(0).round(3)
|
34 |
return df
|
35 |
|
36 |
+
def compute_raw_stats_per_frame(reader: MultiTaskDataset, classes: list[str]) -> pd.DataFrame:
|
37 |
res = tr.zeros((len(reader), 8, 4)).long() # (N, 8, 4)
|
38 |
index = []
|
39 |
for i in trange(len(reader)):
|
|
|
65 |
parser.add_argument("--classes", required=True, nargs="+")
|
66 |
parser.add_argument("--class_weights", nargs="+", type=float)
|
67 |
parser.add_argument("--scenes", nargs="+", default=["all"], help="each scene will get separate metrics if provided")
|
68 |
+
parser.add_argument("--overwrite", action="store_true")
|
69 |
args = parser.parse_args()
|
70 |
if args.class_weights is None:
|
71 |
+
logger.info("No class weights provided, defaulting to equal weights.")
|
72 |
args.class_weights = [1 / len(args.classes)] * len(args.classes)
|
73 |
assert (a := len(args.class_weights)) == (b := len(args.classes)), (a, b)
|
74 |
assert np.fabs(sum(args.class_weights) - 1) < 1e-3, (args.class_weights, sum(args.class_weights))
|
75 |
assert args.output_path.suffix == ".csv", f"Prediction file must end in .csv, got: '{args.output_path.suffix}'"
|
76 |
if len(args.scenes) > 0:
|
77 |
logger.info(f"Scenes: {args.scenes}")
|
78 |
+
if args.output_path.exists() and args.overwrite:
|
79 |
+
os.remove(args.output_path)
|
80 |
return args
|
81 |
|
82 |
def main(args: Namespace):
|
83 |
+
# setup to put both directories in the same parent directory for the reader to work.
|
84 |
+
(temp_dir := Path(TemporaryDirectory().name)).mkdir(exist_ok=False)
|
85 |
os.symlink(args.y_dir, temp_dir / "pred")
|
86 |
os.symlink(args.gt_dir, temp_dir / "gt")
|
87 |
+
sema_repr = partial(SemanticRepresentation, classes=args.classes, color_map=[[0, 0, 0]] * len(args.classes))
|
88 |
+
reader = MultiTaskDataset(temp_dir, handle_missing_data="drop", task_types={"pred": sema_repr, "gt": sema_repr})
|
89 |
+
assert (a := len(reader.all_files_per_repr["gt"])) == (b := len(reader.all_files_per_repr["pred"])), f"{a} vs {b}"
|
90 |
|
91 |
+
# Compute TP, FP, TN, FN for each frame
|
92 |
if not args.output_path.exists():
|
93 |
+
raw_stats = compute_raw_stats_per_frame(reader, args.classes)
|
|
|
|
|
94 |
logger.info(f"Stored raw metrics file to: '{args.output_path}'")
|
95 |
raw_stats.to_csv(args.output_path)
|
96 |
else:
|
97 |
logger.info(f"Loading raw metrics from: '{args.output_path}'. Delete this file if you want to recompute.")
|
98 |
raw_stats = pd.read_csv(args.output_path, index_col=0)
|
99 |
|
100 |
+
# Compute Precision, Recall, F1, IoU for each class and put them together in the same df.
|
101 |
+
metrics_per_class = pd.concat([compute_metrics_by_class(raw_stats, class_name) for class_name in args.classes])
|
102 |
|
103 |
+
# Aggregate the class-level metrics to the final metrics based on the class weights (compute globally by stats)
|
104 |
final_agg = []
|
105 |
+
for scene in args.scenes: # if we have >1 scene in the test set, aggregate the results for each of them separately
|
106 |
+
final_agg.append(compute_final_per_scene(metrics_per_class, scene, args.classes, args.class_weights))
|
|
|
107 |
final_agg = pd.DataFrame(final_agg, columns=["scene", "iou", "f1"]).set_index("scene")
|
108 |
if len(args.scenes) > 1:
|
109 |
final_agg.loc["mean"] = final_agg.mean()
|