"""MultiTask representations stored as .npz files on the disk""" from __future__ import annotations from pathlib import Path import numpy as np import torch as tr class NpzRepresentation: """Generic Task with data read from/saved to npz files. Tries to read data as-is from disk and store it as well""" def __init__(self, name: str): self.name = name def load_from_disk(self, path: Path) -> tr.Tensor: """Reads the npz data from the disk and transforms it properly""" data = np.load(path, allow_pickle=False) data = data if isinstance(data, np.ndarray) else data["arr_0"] # in case on npz, we need this as well return tr.from_numpy(data) # can be uint8, float16, float32 etc. def save_to_disk(self, data: tr.Tensor, path: Path): """stores this item to the disk which can then be loaded via `load_from_disk`""" np.save(path, data.cpu().detach().numpy(), allow_pickle=False) def plot_fn(self, x: tr.Tensor) -> np.ndarray: """very basic implementation of converting this representation to a viewable image. You should overwrite this""" assert isinstance(x, tr.Tensor), type(x) if len(x.shape) == 2: x = x.unsqueeze(-1) assert len(x.shape) == 3, x.shape # guaranteed to be (H, W, C) at this point if x.shape[-1] != 3: x = x[..., 0:1] if x.shape[-1] == 1: x = x.repeat(1, 1, 3) x = x.nan_to_num(0).cpu().detach().numpy() # guaranteed to be (H, W, 3) at this point hopefully _min, _max = x.min((0, 1), keepdims=True), x.max((0, 1), keepdims=True) if x.dtype != np.uint8: x = np.nan_to_num((x - _min) / (_max - _min) * 255, 0).astype(np.uint8) return x def normalize(self, x: tr.Tensor, x_min: tr.Tensor, x_max: tr.Tensor) -> tr.Tensor: """normalizes a data point read with self.load_from_disk(path) using external min/max information""" return ((x - x_max) / (x_max - x_min)).nan_to_num(0, 0, 0) def standardize(self, x: tr.Tensor, x_mean: tr.Tensor, x_std: tr.Tensor) -> tr.Tensor: """standardizes a data point read with self.load_from_disk(path) using external min/max information""" return ((x - x_mean) / x_std).nan_to_num(0, 0, 0) @property def n_channels(self) -> int: """return the number of channels for this representation. Must be updated by each downstream representation""" raise NotImplementedError(f"n_channels is not implemented for {self}") def __repr__(self): return str(self) def __str__(self): return f"{str(type(self)).split('.')[-1][0:-2]}({self.name})"