#!/usr/bin/env python3 import sys from pathlib import Path sys.path.append(Path(__file__).parents[1].__str__()) from dronescapes_reader import MultiTaskDataset from dronescapes_reader.dronescapes_representations import dronescapes_task_types from pprint import pprint from torch.utils.data import DataLoader import random import numpy as np def main(): assert len(sys.argv) == 2, f"Usage ./dronescapes_viewer.py /path/to/dataset" reader = MultiTaskDataset(sys.argv[1], task_names=list(dronescapes_task_types.keys()), task_types=dronescapes_task_types, handle_missing_data="fill_nan", normalization="min_max", cache_task_stats=True) print(reader) print("== Shapes ==") pprint(reader.data_shape) print("== Random loaded item ==") rand_ix = random.randint(0, len(reader) - 1) data, name, repr_names = reader[rand_ix] # get a random item pprint({k: v for k, v in data.items()}) img_data = {} for k, v in data.items(): img_data[k] = reader.name_to_task[k].plot_fn(v) if v is not None else np.zeros((*reader.data_shape[k][0:2], 3)) print("== Random loaded batch ==") batch_data, name, repr_names = reader[rand_ix: min(len(reader), rand_ix + 5)] # get a random batch pprint({k: v for k, v in batch_data.items()}) # Nones are converted to 0s automagically print("== Random loaded batch using torch DataLoader ==") loader = DataLoader(reader, collate_fn=reader.collate_fn, batch_size=5, shuffle=True) batch_data, name, repr_names = next(iter(loader)) pprint({k: v for k, v in batch_data.items()}) # Nones are converted to 0s automagically if __name__ == "__main__": main()