"""Dronescapes representations -- adds various loading/writing/image showing capabilities to dronescapes tasks""" from __future__ import annotations from pathlib import Path from typing import Callable import numpy as np import torch as tr import flow_vis from skimage.color import rgb2hsv from overrides import overrides from matplotlib.cm import Spectral # pylint: disable=no-name-in-module from torch.nn import functional as F try: from npz_representation import NpzRepresentation except ImportError: from .npz_representation import NpzRepresentation class RGBRepresentation(NpzRepresentation): def __init__(self, *args, **kwargs): super().__init__(*args, n_channels=3, **kwargs) class HSVRepresentation(RGBRepresentation): @overrides def load_from_disk(self, path: Path) -> tr.Tensor: rgb = super().load_from_disk(path) return tr.from_numpy(rgb2hsv(rgb)).float() class EdgesRepresentation(NpzRepresentation): def __init__(self, *args, **kwargs): super().__init__(*args, n_channels=1, **kwargs) class DepthRepresentation(NpzRepresentation): """DepthRepresentation. Implements depth task-specific stuff, like spectral map for plots.""" def __init__(self, name: str, min_depth: float, max_depth: float, *args, **kwargs): super().__init__(name, n_channels=1, *args, **kwargs) self.min_depth = min_depth self.max_depth = max_depth @overrides def load_from_disk(self, path: Path) -> tr.Tensor: """Reads the npz data from the disk and transforms it properly""" res = super().load_from_disk(path) res_clip = res.clip(self.min_depth, self.max_depth) return res_clip @overrides def plot_fn(self, x: tr.Tensor) -> np.ndarray: x = x.detach().clip(0, 1).squeeze().cpu().numpy() _min, _max = np.percentile(x, [1, 95]) x = np.nan_to_num((x - _min) / (_max - _min), False, 0, 0, 0).clip(0, 1) y: np.ndarray = Spectral(x)[..., 0:3] * 255 return y.astype(np.uint8) class NormalsRepresentation(NpzRepresentation): def __init__(self, *args, **kwargs): super().__init__(*args, n_channels=3, **kwargs) class SemanticRepresentation(NpzRepresentation): """SemanticRepresentation. Implements semantic task-specific stuff, like argmaxing if needed""" def __init__(self, *args, classes: int | list[str], color_map: list[tuple[int, int, int]], **kwargs): self.n_classes = len(list(range(classes)) if isinstance(classes, int) else classes) super().__init__(*args, **kwargs, n_channels=self.n_classes) self.classes = list(range(classes)) if isinstance(classes, int) else classes self.color_map = color_map assert len(color_map) == self.n_classes and self.n_classes > 1, (color_map, self.n_classes) @overrides def load_from_disk(self, path: Path) -> tr.Tensor: res = super().load_from_disk(path) if len(res.shape) == 3: assert res.shape[-1] == self.n_classes, f"Expected {self.n_classes} (HxWxC), got {res.shape[-1]}" res = res.argmax(-1) assert len(res.shape) == 2, f"Only argmaxed data supported, got: {res.shape}" res = F.one_hot(res.long(), num_classes=self.n_classes).float() return res @overrides def plot_fn(self, x: tr.Tensor) -> np.ndarray: x_argmax = x.squeeze().nan_to_num(0).detach().argmax(-1).cpu().numpy() new_images = np.zeros((*x_argmax.shape, 3), dtype=np.uint8) for i in range(self.n_classes): new_images[x_argmax == i] = self.color_map[i] return new_images color_map_8classes = [[0, 255, 0], [0, 127, 0], [255, 255, 0], [255, 255, 255], [255, 0, 0], [0, 0, 255], [0, 255, 255], [127, 127, 63]] classes_8 = ["land", "forest", "residential", "road", "little-objects", "water", "sky", "hill"] _tasks: list[NpzRepresentation] = [ # some pre-baked representations rgb := RGBRepresentation("rgb"), HSVRepresentation("hsv", dependencies=[rgb]), EdgesRepresentation("edges_gb"), DepthRepresentation("depth_sfm_manual202204", min_depth=0, max_depth=300), DepthRepresentation("depth_ufo", min_depth=0, max_depth=1), NormalsRepresentation("normals_sfm_manual202204"), SemanticRepresentation("semantic_segprop8", classes=classes_8, color_map=color_map_8classes), NpzRepresentation("softseg_gb", 3), ] dronescapes_task_types: dict[str, NpzRepresentation] = {task.name: task for task in _tasks}