"""MultiTask representations stored as .npz files on the disk""" from __future__ import annotations from pathlib import Path import numpy as np import torch as tr class NpzRepresentation: """Generic Task with data read from/saved to npz files. Tries to read data as-is from disk and store it as well""" def __init__(self, name: str, n_channels: int, dependencies: list[NpzRepresentation] | None = None): self.name = name self.n_channels = n_channels dependencies = deps = [self] if dependencies is None else dependencies self.dependencies: list[NpzRepresentation] = dependencies assert all(isinstance(dep, NpzRepresentation) for dep in deps), f"{self}: {dict(zip(deps, map(type, deps)))}" self.classes: list[str] | None = None self.normalization: str | None = None self.min: tr.Tensor | None = None self.max: tr.Tensor | None = None self.mean: tr.Tensor | None = None self.std: tr.Tensor | None = None @property def is_classification(self) -> bool: """if we have self.classes""" return self.classes is not None @property def dep_names(self) -> list[str]: """The names of the dependencies of this representation""" return [dep.name for dep in self.dependencies] def set_normalization(self, normalization: str, stats: tuple[tr.Tensor, tr.Tensor, tr.Tensor, tr.Tensor]): """sets the normalization""" assert normalization in ("min_max", "standardization"), normalization assert isinstance(stats, tuple) and len(stats) == 4, stats self.normalization = normalization self.min, self.max, self.mean, self.std = stats def load_from_disk(self, path: Path) -> tr.Tensor: """Reads the npz data from the disk and transforms it properly""" data = np.load(path, allow_pickle=False) data = data if isinstance(data, np.ndarray) else data["arr_0"] # in case on npz, we need this as well data = data.astype(np.float32) if np.issubdtype(data.dtype, np.floating) else data # float16 is dangerous res = tr.from_numpy(data) res = res.unsqueeze(-1) if len(res.shape) == 2 and self.n_channels == 1 else res # (H, W) in some dph/edges assert ((res.shape[-1] == self.n_channels and len(res.shape) == 3) or (len(res.shape) == 2 and self.is_classification)), f"{self.name}: {res.shape} vs {self.n_channels}" return res def save_to_disk(self, data: tr.Tensor, path: Path): """stores this item to the disk which can then be loaded via `load_from_disk`""" np.save(path, data.cpu().detach().numpy(), allow_pickle=False) def plot_fn(self, x: tr.Tensor) -> np.ndarray: """very basic implementation of converting this representation to a viewable image. You should overwrite this""" assert isinstance(x, tr.Tensor), type(x) assert len(x.shape) == 3, x.shape # guaranteed to be (H, W, C) at this point x = x.nan_to_num(0).cpu().detach() if x.shape[-1] != 3: x = x[..., 0:1] if x.shape[-1] == 1: # guaranteed to be (H, W, 3) after this if statement hopefully x = x.repeat(1, 1, 3) if x.dtype == tr.uint8 or self.is_classification: return x.numpy() if self.normalization is not None: x = (x * self.std + self.mean) if self.normalization == "standardization" else x x = x * (self.max - self.min) + self.min if self.normalization == "min_max" else x x = (x * 255) if (self.max <= 1).any() else x x = x.numpy().astype(np.uint8) return x def normalize(self, x: tr.Tensor) -> tr.Tensor: """normalizes a data point read with self.load_from_disk(path) using external min/max information""" assert self.min is not None, "self.statistics must be set from reader before task.normalize(x)" return ((x.float() - self.min) / (self.max - self.min)).nan_to_num(0, 0, 0).float() def standardize(self, x: tr.Tensor) -> tr.Tensor: """standardizes a data point read with self.load_from_disk(path) using external min/max information""" assert self.min is not None, "self.statistics must be set from reader before task.normalize(x)" res = ((x.float() - self.mean) / self.std).nan_to_num(0, 0, 0) res[(res < -10) | (res > 10)] = 0 return res.float() def __repr__(self): return str(self) def __str__(self): return f"{str(type(self)).split('.')[-1][0:-2]}({self.name}[{self.n_channels}])"