Meehai commited on
Commit
d57171f
·
1 Parent(s): 65124f4

added script

Browse files
scripts/collage_comparison/cfg.yaml ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ default_io_parameters:
2
+ binary_format: npz
3
+ image_format: not-set
4
+ compress: True
5
+ output_size: [540, 960]
6
+
7
+ default_learned_parameters:
8
+ device: ${oc.env:VRE_DEVICE,cpu}
9
+
10
+ default_compute_parameters:
11
+ batch_size: 15
12
+
13
+ representations:
14
+ rgb:
15
+ type: color/rgb
16
+ dependencies: []
17
+ parameters: {}
18
+
19
+ # opticalflow_rife:
20
+ # type: optical-flow/rife
21
+ # dependencies: []
22
+ # parameters:
23
+ # uhd: False
24
+ # compute_backward_flow: False
25
+ # compute_parameters:
26
+ # output_dtype: float16
27
+
28
+ semantic_mask2former_coco_47429163_0:
29
+ type: semantic-segmentation/mask2former
30
+ dependencies: []
31
+ parameters:
32
+ model_id: "47429163_0"
33
+ disk_data_argmax: True
34
+ compute_parameters:
35
+ batch_size: 1
36
+
37
+ semantic_mask2former_mapillary_49189528_0:
38
+ type: semantic-segmentation/mask2former
39
+ dependencies: []
40
+ parameters:
41
+ model_id: "49189528_0"
42
+ disk_data_argmax: True
43
+ compute_parameters:
44
+ batch_size: 1
45
+
46
+ semantic_mask2former_mapillary_49189528_1:
47
+ type: semantic-segmentation/mask2former
48
+ dependencies: []
49
+ parameters:
50
+ model_id: "49189528_1"
51
+ disk_data_argmax: True
52
+ compute_parameters:
53
+ batch_size: 1
54
+
55
+ depth_marigold:
56
+ type: depth/marigold
57
+ dependencies: []
58
+ parameters:
59
+ variant: marigold-lcm-v1-0
60
+ denoising_steps: 4
61
+ ensemble_size: 1
62
+ processing_resolution: 768
63
+ compute_parameters:
64
+ batch_size: 5
65
+
66
+ normals_svd(depth_marigold):
67
+ type: normals/depth-svd
68
+ dependencies: [depth_marigold]
69
+ parameters:
70
+ sensor_fov: 75
71
+ sensor_size: [3840, 2160]
72
+ window_size: 11
73
+ io_parameters:
74
+ output_dtype: float16
scripts/collage_comparison/wip.py ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ import os
3
+ os.environ["VRE_LOGLEVEL"] = "0"
4
+ from argparse import ArgumentParser, Namespace
5
+ import torch as tr
6
+ import numpy as np
7
+ from pathlib import Path
8
+ import sys
9
+ import random
10
+ from typing import Callable
11
+ from pprint import pprint
12
+ from lightning_module_enhanced import LME
13
+ from lightning_module_enhanced.utils import to_device
14
+ from omegaconf import DictConfig
15
+ from loggez import loggez_logger as logger
16
+ from vre.readers import MultiTaskDataset
17
+ from functools import partial
18
+ from vre.utils import collage_fn, image_add_title, colorize_semantic_segmentation, lo, image_resize, image_write
19
+ from vre import FFmpegVideo
20
+ from PIL import Image
21
+ import subprocess
22
+ from tqdm import tqdm
23
+ import matplotlib.pyplot as plt
24
+ from contexttimer import Timer
25
+
26
+ sys.path.append("/export/home/proiecte/aux/mihai_cristian.pirvu/code/neo-transformers")
27
+ from readers import VITMultiTaskDataset, build_representations
28
+ from models import build_model
29
+ from plots import vre_plot_fn
30
+ from algorithms import build_algorithm, ModelAlgorithmOutput
31
+
32
+ # os.environ["CUDA_VISIBLE_DEVICES"]="0" #"7"
33
+ device = tr.device("cuda") if tr.cuda.is_available() else tr.device("cpu")
34
+
35
+ def seed(seed: int):
36
+ random.seed(seed)
37
+ np.random.seed(seed)
38
+ tr.random.manual_seed(seed)
39
+
40
+ def fix_batch_(batch: dict, missing_tasks: list[str]) -> dict:
41
+ assert len(batch["data"]["rgb"]) == 1, batch["data"]["rgb"] # inference with bs=1 allowed for now only
42
+ assert set(missing_tasks).issubset({"semantic_output", "depth_output", "camera_normals_output"}), missing_tasks
43
+ if "semantic_output" in missing_tasks:
44
+ batch["data"]["semantic_output"] = [tr.zeros(8, 540, 960)]
45
+ batch["image_shape"][0]["semantic_output"] = 8
46
+ if "depth_output" in missing_tasks:
47
+ batch["data"]["depth_output"] = [tr.zeros(1, 540, 960)]
48
+ batch["image_shape"][0]["depth_output"] = 1
49
+ if "camera_normals_output" in missing_tasks:
50
+ batch["data"]["camera_normals_output"] = [tr.zeros(3, 540, 960)]
51
+ batch["image_shape"][0]["camera_normals_output"] = 3
52
+ batch["data"] = {k: batch["data"][k] for k in sorted(batch["data"].keys())}
53
+ batch["image_shape"] = [{k: batch["image_shape"][0][k] for k in sorted(batch["image_shape"][0].keys())}, ]
54
+ return batch
55
+
56
+ def fix_plot_fns_(plot_fns: dict[str, Callable], task_types: dict[str, "Repr"], stats: dict[str, tuple[list[float]]],
57
+ normalization: str):
58
+ for task_name in ["camera_normals_output", "depth_output", "semantic_output"]:
59
+ if hasattr(task_types[task_name], "set_normalization"):
60
+ task_types[task_name].set_normalization(normalization, tuple(stats[task_name]))
61
+ plot_fns[task_name] = partial(vre_plot_fn, node=task_types[task_name])
62
+
63
+ def load_model_from_path(weights_path):
64
+ data = tr.load(weights_path, map_location="cpu")
65
+ cfg = DictConfig(data["hyper_parameters"]["cfg"])
66
+ cfg.train.algorithm.metrics_only_on_masked = True
67
+ model = LME(build_model(cfg).to(device).eval())
68
+ print(f"DEVICE: {device}")
69
+ model.load_state_dict(data["state_dict"])
70
+ model.model_algorithm = build_algorithm(cfg.model.type, cfg.train.algorithm, loss_computer=None)
71
+ model.hparams.cfg = cfg
72
+ stats = data["hyper_parameters"]["statistics"]
73
+ model.hparams.stats = stats
74
+
75
+ logger.info(f"Loaded '{cfg.model.type}' with {model.num_params} parameters from '{weights_path}'")
76
+ logger.info(f"Excluded (fully masked) tasks: {cfg.train.algorithm.masking.parameters.excluded_tasks}")
77
+ return model
78
+
79
+
80
+ def colorize_dronescapes(item: np.ndarray) -> np.ndarray:
81
+ # colorize_semantic_segmentation
82
+ assert len(item.shape) == 3 and item.shape[-1] == 8, item.shape
83
+ color_map = [[0, 255, 0], [0, 127, 0], [255, 255, 0], [255, 255, 255],
84
+ [255, 0, 0], [0, 0, 255], [0, 255, 255], [127, 127, 63]]
85
+ classes_8 = ["land", "forest", "residential", "road", "little-objects", "water", "sky", "hill"]
86
+ return colorize_semantic_segmentation(item[None].argmax(-1), color_map=color_map, classes=classes_8)[0]
87
+
88
+ @tr.no_grad
89
+ def inference(model: LME | str, batch: dict, n_ens: int | None = None) -> np.ndarray:
90
+ assert len(batch["name"]) == 1, batch["name"]
91
+ if isinstance(model, str) and model == "semantic_mask2former_r50_mapillary_converted":
92
+ item = batch["data"]["semantic_mask2former_r50_mapillary_converted"][0]
93
+ else:
94
+ tasks = model.hparams["cfg"]["train"]["algorithm"]["masking"]["parameters"]["tasks"]
95
+ if len(tasks) == 2:
96
+ batch = {
97
+ "data": {"rgb": batch["data"]["rgb"], "semantic_output": [tr.zeros(8, 540, 960)]},
98
+ "image_shape": [{"rgb": 3, "semantic_output": 8}, *batch["image_shape"][1:]],
99
+ }
100
+ y_model: ModelAlgorithmOutput = to_device(model.model_algorithm(model, batch).y, "cpu")
101
+ item = y_model.pred["semantic_output"][0]
102
+ else:
103
+ assert n_ens is not None, n_ens
104
+ batch = fix_batch_(batch, model.hparams.cfg.train.algorithm.masking.parameters.excluded_tasks)
105
+ acc_sema = None
106
+ for i in range(n_ens):
107
+ y_model: ModelAlgorithmOutput = to_device(model.model_algorithm(model, batch).y, "cpu")
108
+ curr_sema = y_model.pred["semantic_output"].to("cpu")
109
+ if acc_sema is None:
110
+ acc_sema = curr_sema
111
+ else:
112
+ acc_sema = (acc_sema * i + curr_sema) / (i + 1)
113
+ item = acc_sema[0]
114
+ return colorize_dronescapes(item.permute(1, 2, 0).numpy())
115
+
116
+ def get_args() -> Namespace:
117
+ parser = ArgumentParser()
118
+ parser.add_argument("video_path", type=Path)
119
+ parser.add_argument("--frames")
120
+ return parser.parse_args()
121
+
122
+ def main(args: Namespace):
123
+ video = FFmpegVideo(video_path := args.video_path)
124
+ frames = list(range(len(video)))
125
+ if args.frames is not None:
126
+ frames = list(range(*map(int, args.frames.split(".."))))
127
+
128
+ (vre_dir := Path.cwd() / f"data_{video_path.name}").mkdir(exist_ok=True)
129
+ assert (vre_dir / "rgb").exists(), vre_dir
130
+ for frame in frames:
131
+ assert (vre_dir / f"rgb/npz/{frame}.npz").exists(), frame
132
+ cfg_path = Path(__file__).parent / "cfg.yaml"
133
+ assert cfg_path.exists(), cfg_path
134
+ # frames = sorted(map(str, set([random.randint(0, N) for _ in range(5)])))
135
+ representations = ["semantic_mask2former_coco_47429163_0", "semantic_mask2former_mapillary_49189528_0",
136
+ "semantic_mask2former_mapillary_49189528_1", "depth_marigold", "normals_svd(depth_marigold)",
137
+ "semantic_mask2former_swin_mapillary_converted", "semantic_mask2former_r50_mapillary_converted",
138
+ "semantic_mask2former_swin_coco_converted", "semantic_median_expert",
139
+ "buildings", "buildings(nearby)", "containing", "rgb", "safe-landing-no-sseg",
140
+ "safe-landing-semantics", "sky-and-water", "transportation", "vegetation"]
141
+
142
+ # args = ["vre", str(video_path), "--config_path", str(cfg_path),
143
+ # "-o", str(vre_dir), "--representations", *representations,
144
+ # "-I", f"{Path.cwd().parents[1]}/readers/semantic_mapper.py:get_new_semantic_mapped_tasks",
145
+ # "--output_dir_exists_mode", "skip_computed",
146
+ # ]
147
+ # frames = None#["5"]
148
+ # if frames is not None:
149
+ # args.extend(["--frames", *frames])
150
+ # # print(" ".join(args))
151
+ # subprocess.run(args=args, env={**os.environ.copy(), **{"VRE_DEVICE": "cuda" if tr.cuda.is_available() else "cpu", "CUDA_VISIBLE_DEVICES": "7"}})
152
+
153
+ weights_path = "/export/home/proiecte/aux/mihai_cristian.pirvu/code/neo-transformers/ckpts/safeuav/sema/mae-4M-ext/epoch=37-val_semantic_output_mean_iou=0.470.ckpt"
154
+ weights_path_dstil = "/export/home/proiecte/aux/mihai_cristian.pirvu/code/neo-transformers/ckpts/safeuav/distil2/sl0-4M-ext2-distil/epoch=24-val_semantic_output_mean_iou=0.472.ckpt"
155
+
156
+ model_mae = load_model_from_path(weights_path)
157
+ model_distil = load_model_from_path(weights_path_dstil)
158
+ task_types = build_representations((cfg := model_mae.hparams.cfg).data.dataset)
159
+ stats = model_mae.hparams.stats
160
+
161
+ test_base_reader2 = MultiTaskDataset(vre_dir, task_types={k: task_types[k] for k in {"semantic_mask2former_r50_mapillary_converted", "rgb"}},
162
+ **{**cfg.data.parameters, "task_names": ["rgb", "semantic_mask2former_r50_mapillary_converted"], "normalization": None},
163
+ statistics=stats)
164
+ reader2 = VITMultiTaskDataset(test_base_reader2)
165
+ plot_fns2 = dict(zip(reader2.task_names, [partial(vre_plot_fn, node=n) for n in reader2.tasks]))
166
+ fix_plot_fns_(plot_fns2, task_types, stats, cfg["data"]["parameters"]["normalization"])
167
+
168
+ model_tasks = [t for t in cfg.data.parameters.task_names
169
+ if t not in cfg.train.algorithm.masking.parameters.excluded_tasks]
170
+ _task_types = {k: v for k, v in task_types.items() if k in model_tasks}
171
+ test_base_reader = MultiTaskDataset(vre_dir, task_types=_task_types,
172
+ **{**cfg.data.parameters, "task_names": list(_task_types)},
173
+ statistics=stats)
174
+ reader = VITMultiTaskDataset(test_base_reader)
175
+
176
+ plot_fns = dict(zip(reader.task_names, [partial(vre_plot_fn, node=n) for n in reader.tasks]))
177
+ fix_plot_fns_(plot_fns, task_types, stats, cfg["data"]["parameters"]["normalization"])
178
+
179
+ (out_dir := Path.cwd() / f"out_{video_path.name}").mkdir(exist_ok=True)
180
+ for frame_ix in tqdm(frames):
181
+ if (out_file := out_dir/ f"{frame_ix}.jpg").exists():
182
+ continue
183
+ batch_m2f = reader2.collate_fn([reader2[frame_ix]])
184
+ batch = reader.collate_fn([reader[frame_ix]])
185
+ m2f_img = inference("semantic_mask2former_r50_mapillary_converted", batch_m2f)
186
+ ens_img = inference(model_mae, batch, n_ens=30)
187
+ distil_img = inference(model_distil, batch)
188
+ rgb = batch_m2f["data"]["rgb"][0].permute(1, 2, 0).numpy()
189
+
190
+ titles = ["RGB", "Mask2Former (216M)", "Ensembles-30 (4M)", "Distillation (4M)"]
191
+ collage = collage_fn([rgb, m2f_img, ens_img, distil_img], titles=titles, rows_cols=(2, 2), size_px=40)
192
+ image_write(collage, out_file)
193
+
194
+ if __name__ == "__main__":
195
+ main(get_args())