small fix for semantic mapper
Browse files
scripts/semantic_mapper/semantic_mapper.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
scripts/semantic_mapper/semantic_mapper.py
CHANGED
@@ -16,10 +16,13 @@ from vre.representations.cv_representations import DepthRepresentation, NormalsR
|
|
16 |
def plot_one(data: MultiTaskItem, title: str, order: list[str] | None,
|
17 |
name_to_task: dict[str, Representation]) -> np.ndarray:
|
18 |
"""simple plot function: plot_one(reader[0][0], reader[0][1], None, reader.name_to_task)"""
|
19 |
-
def vre_plot_fn(
|
20 |
-
node.data = ReprOut(
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
23 |
img_data = reorder_dict(img_data, order) if order is not None else img_data
|
24 |
titles = [title if len(title) < 40 else f"{title[0:19]}..{title[-19:]}" for title in img_data]
|
25 |
collage = collage_fn(list(img_data.values()), titles=titles, size_px=40)
|
@@ -456,27 +459,30 @@ def get_new_semantic_mapped_tasks(tasks_subset: list[str] | None = None) -> dict
|
|
456 |
return {t.name: t for t in available_tasks if t.name in tasks_subset}
|
457 |
|
458 |
if __name__ == "__main__":
|
459 |
-
cfg_path = Path.cwd() / "cfg.yaml"
|
460 |
-
data_path = Path.cwd() / "
|
461 |
vre_dir = data_path
|
462 |
|
463 |
task_names = ["rgb", "depth_marigold", "normals_svd(depth_marigold)", "opticalflow_rife",
|
464 |
-
"semantic_mask2former_coco_47429163_0", "semantic_mask2former_mapillary_49189528_0"
|
|
|
465 |
order = ["rgb", "semantic_mask2former_mapillary_49189528_0", "semantic_mask2former_coco_47429163_0",
|
466 |
"depth_marigold", "normals_svd(depth_marigold)"]
|
467 |
|
468 |
representations = build_representations_from_cfg(cfg_path)
|
|
|
469 |
reader = MultiTaskDataset(vre_dir, task_names=task_names,
|
470 |
task_types=representations, handle_missing_data="fill_nan",
|
471 |
-
normalization="min_max", cache_task_stats=True, batch_size_stats=100
|
|
|
472 |
orig_task_names = list(reader.task_types.keys())
|
473 |
|
474 |
-
new_tasks = get_new_semantic_mapped_tasks()
|
475 |
-
for task_name in reader.task_names:
|
476 |
-
|
477 |
-
|
478 |
-
for new_task in new_tasks.values():
|
479 |
-
|
480 |
|
481 |
print("== Random loaded item ==")
|
482 |
ixs = np.random.permutation(range(len(reader))).tolist()
|
|
|
16 |
def plot_one(data: MultiTaskItem, title: str, order: list[str] | None,
|
17 |
name_to_task: dict[str, Representation]) -> np.ndarray:
|
18 |
"""simple plot function: plot_one(reader[0][0], reader[0][1], None, reader.name_to_task)"""
|
19 |
+
def vre_plot_fn(rgb_img: np.ndarray, x: tr.Tensor, node: Representation) -> np.ndarray:
|
20 |
+
node.data = ReprOut(frames=rgb_img, output=MemoryData(x.cpu().detach().numpy()[None]), key=[0])
|
21 |
+
res = node.make_images()[0]
|
22 |
+
return res
|
23 |
+
name_to_task["rgb"].data = ReprOut(frames=None, output=MemoryData(data["rgb"].detach().numpy())[None], key=[0])
|
24 |
+
rgb_img = name_to_task["rgb"].make_images()
|
25 |
+
img_data = {k: vre_plot_fn(rgb_img, v, name_to_task[k]) for k, v in data.items()}
|
26 |
img_data = reorder_dict(img_data, order) if order is not None else img_data
|
27 |
titles = [title if len(title) < 40 else f"{title[0:19]}..{title[-19:]}" for title in img_data]
|
28 |
collage = collage_fn(list(img_data.values()), titles=titles, size_px=40)
|
|
|
459 |
return {t.name: t for t in available_tasks if t.name in tasks_subset}
|
460 |
|
461 |
if __name__ == "__main__":
|
462 |
+
cfg_path = Path.cwd() / "../../vre_dronescapes/cfg.yaml"
|
463 |
+
data_path = Path.cwd() / "../../vre_dronescapes/norway_210821_DJI_0015_full/"
|
464 |
vre_dir = data_path
|
465 |
|
466 |
task_names = ["rgb", "depth_marigold", "normals_svd(depth_marigold)", "opticalflow_rife",
|
467 |
+
"semantic_mask2former_coco_47429163_0", "semantic_mask2former_mapillary_49189528_0",
|
468 |
+
"semantic_mask2former_mapillary_49189528_1"]
|
469 |
order = ["rgb", "semantic_mask2former_mapillary_49189528_0", "semantic_mask2former_coco_47429163_0",
|
470 |
"depth_marigold", "normals_svd(depth_marigold)"]
|
471 |
|
472 |
representations = build_representations_from_cfg(cfg_path)
|
473 |
+
statistics = np.load(Path.cwd() / "../../data/train_set/.task_statistics.npz", allow_pickle=True)["arr_0"].item()
|
474 |
reader = MultiTaskDataset(vre_dir, task_names=task_names,
|
475 |
task_types=representations, handle_missing_data="fill_nan",
|
476 |
+
normalization="min_max", cache_task_stats=True, batch_size_stats=100,
|
477 |
+
statistics=statistics)
|
478 |
orig_task_names = list(reader.task_types.keys())
|
479 |
|
480 |
+
# new_tasks = get_new_semantic_mapped_tasks()
|
481 |
+
# for task_name in reader.task_names:
|
482 |
+
# if task_name not in orig_task_names:
|
483 |
+
# reader.remove_task(task_name)
|
484 |
+
# for new_task in new_tasks.values():
|
485 |
+
# reader.add_task(new_task, overwrite=True)
|
486 |
|
487 |
print("== Random loaded item ==")
|
488 |
ixs = np.random.permutation(range(len(reader))).tolist()
|