Meehai commited on
Commit
f7296c7
·
1 Parent(s): 47c4ca5

small fix for semantic mapper

Browse files
scripts/semantic_mapper/semantic_mapper.ipynb CHANGED
The diff for this file is too large to render. See raw diff
 
scripts/semantic_mapper/semantic_mapper.py CHANGED
@@ -16,10 +16,13 @@ from vre.representations.cv_representations import DepthRepresentation, NormalsR
16
  def plot_one(data: MultiTaskItem, title: str, order: list[str] | None,
17
  name_to_task: dict[str, Representation]) -> np.ndarray:
18
  """simple plot function: plot_one(reader[0][0], reader[0][1], None, reader.name_to_task)"""
19
- def vre_plot_fn(rgb: tr.Tensor, x: tr.Tensor, node: Representation) -> np.ndarray:
20
- node.data = ReprOut(rgb.cpu().detach().numpy()[None], MemoryData(x.cpu().detach().numpy()[None]), [0])
21
- return node.make_images()[0]
22
- img_data = {k: vre_plot_fn(data["rgb"], v, name_to_task[k]) for k, v in data.items()}
 
 
 
23
  img_data = reorder_dict(img_data, order) if order is not None else img_data
24
  titles = [title if len(title) < 40 else f"{title[0:19]}..{title[-19:]}" for title in img_data]
25
  collage = collage_fn(list(img_data.values()), titles=titles, size_px=40)
@@ -456,27 +459,30 @@ def get_new_semantic_mapped_tasks(tasks_subset: list[str] | None = None) -> dict
456
  return {t.name: t for t in available_tasks if t.name in tasks_subset}
457
 
458
  if __name__ == "__main__":
459
- cfg_path = Path.cwd() / "cfg.yaml"
460
- data_path = Path.cwd() / "data"
461
  vre_dir = data_path
462
 
463
  task_names = ["rgb", "depth_marigold", "normals_svd(depth_marigold)", "opticalflow_rife",
464
- "semantic_mask2former_coco_47429163_0", "semantic_mask2former_mapillary_49189528_0"]
 
465
  order = ["rgb", "semantic_mask2former_mapillary_49189528_0", "semantic_mask2former_coco_47429163_0",
466
  "depth_marigold", "normals_svd(depth_marigold)"]
467
 
468
  representations = build_representations_from_cfg(cfg_path)
 
469
  reader = MultiTaskDataset(vre_dir, task_names=task_names,
470
  task_types=representations, handle_missing_data="fill_nan",
471
- normalization="min_max", cache_task_stats=True, batch_size_stats=100)
 
472
  orig_task_names = list(reader.task_types.keys())
473
 
474
- new_tasks = get_new_semantic_mapped_tasks()
475
- for task_name in reader.task_names:
476
- if task_name not in orig_task_names:
477
- reader.remove_task(task_name)
478
- for new_task in new_tasks.values():
479
- reader.add_task(new_task, overwrite=True)
480
 
481
  print("== Random loaded item ==")
482
  ixs = np.random.permutation(range(len(reader))).tolist()
 
16
  def plot_one(data: MultiTaskItem, title: str, order: list[str] | None,
17
  name_to_task: dict[str, Representation]) -> np.ndarray:
18
  """simple plot function: plot_one(reader[0][0], reader[0][1], None, reader.name_to_task)"""
19
+ def vre_plot_fn(rgb_img: np.ndarray, x: tr.Tensor, node: Representation) -> np.ndarray:
20
+ node.data = ReprOut(frames=rgb_img, output=MemoryData(x.cpu().detach().numpy()[None]), key=[0])
21
+ res = node.make_images()[0]
22
+ return res
23
+ name_to_task["rgb"].data = ReprOut(frames=None, output=MemoryData(data["rgb"].detach().numpy())[None], key=[0])
24
+ rgb_img = name_to_task["rgb"].make_images()
25
+ img_data = {k: vre_plot_fn(rgb_img, v, name_to_task[k]) for k, v in data.items()}
26
  img_data = reorder_dict(img_data, order) if order is not None else img_data
27
  titles = [title if len(title) < 40 else f"{title[0:19]}..{title[-19:]}" for title in img_data]
28
  collage = collage_fn(list(img_data.values()), titles=titles, size_px=40)
 
459
  return {t.name: t for t in available_tasks if t.name in tasks_subset}
460
 
461
  if __name__ == "__main__":
462
+ cfg_path = Path.cwd() / "../../vre_dronescapes/cfg.yaml"
463
+ data_path = Path.cwd() / "../../vre_dronescapes/norway_210821_DJI_0015_full/"
464
  vre_dir = data_path
465
 
466
  task_names = ["rgb", "depth_marigold", "normals_svd(depth_marigold)", "opticalflow_rife",
467
+ "semantic_mask2former_coco_47429163_0", "semantic_mask2former_mapillary_49189528_0",
468
+ "semantic_mask2former_mapillary_49189528_1"]
469
  order = ["rgb", "semantic_mask2former_mapillary_49189528_0", "semantic_mask2former_coco_47429163_0",
470
  "depth_marigold", "normals_svd(depth_marigold)"]
471
 
472
  representations = build_representations_from_cfg(cfg_path)
473
+ statistics = np.load(Path.cwd() / "../../data/train_set/.task_statistics.npz", allow_pickle=True)["arr_0"].item()
474
  reader = MultiTaskDataset(vre_dir, task_names=task_names,
475
  task_types=representations, handle_missing_data="fill_nan",
476
+ normalization="min_max", cache_task_stats=True, batch_size_stats=100,
477
+ statistics=statistics)
478
  orig_task_names = list(reader.task_types.keys())
479
 
480
+ # new_tasks = get_new_semantic_mapped_tasks()
481
+ # for task_name in reader.task_names:
482
+ # if task_name not in orig_task_names:
483
+ # reader.remove_task(task_name)
484
+ # for new_task in new_tasks.values():
485
+ # reader.add_task(new_task, overwrite=True)
486
 
487
  print("== Random loaded item ==")
488
  ixs = np.random.permutation(range(len(reader))).tolist()