implemented the reader based on MultiTaskReader
Browse files- .gitignore +1 -0
- neo_data_analysis.ipynb +3 -0
- neo_reader/__init__.py +12 -1
- neo_reader/multitask_dataset.py +253 -0
- neo_reader/neo_node.py +15 -16
- neo_reader/neo_reader.py +0 -183
- neo_viewer.ipynb +2 -2
.gitignore
CHANGED
@@ -8,4 +8,5 @@ neo_1month/
|
|
8 |
__pycache__
|
9 |
*.pyc
|
10 |
dataset/
|
|
|
11 |
|
|
|
8 |
__pycache__
|
9 |
*.pyc
|
10 |
dataset/
|
11 |
+
*.ttf
|
12 |
|
neo_data_analysis.ipynb
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0cf0b3146625724c73369a3e064e940f9a5e4fe349d653b322de1fd4e3bf396f
|
3 |
+
size 50024
|
neo_reader/__init__.py
CHANGED
@@ -1,3 +1,14 @@
|
|
1 |
"""init file"""
|
2 |
-
from .
|
3 |
from .neo_node import NEONode
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
"""init file"""
|
2 |
+
from .multitask_dataset import MultiTaskDataset
|
3 |
from .neo_node import NEONode
|
4 |
+
|
5 |
+
# For both 1month and 1week datasets
|
6 |
+
_name_to_type = {"AOD": "AerosolOpticalDepth", "BS_ALBEDO": "Albedo", "CHLORA": "Chlorophyll",
|
7 |
+
"CLD_FR": "CloudFraction", "CLD_RD": "CloudParticleRadius", "CLD_WP": "CloudWaterContent",
|
8 |
+
"COT": "CloudOpticalThickness", "CO_M": "CarbonMonoxide", "FIRE": "Fire",
|
9 |
+
"INSOL": "SolarInsolation", "LAI": "LeafAreaIndex", "LSTD": "Temperature",
|
10 |
+
"LSTD_AN": "TemperatureAnomaly", "LSTN": "Temperature", "LSTN_AN": "TemperatureAnomaly",
|
11 |
+
"LWFLUX": "OutgoingLongwaveRadiation", "NDVI": "Vegetation", "NETFLUX": "NetRadiation",
|
12 |
+
"NO2": "NitrogenDioxide", "OZONE": "Ozone", "SNOWC": "SnowCover", "SST": "SeaSurfaceTemperature",
|
13 |
+
"SWFLUX": "ReflectedShortwaveRadiation", "WV": "WaterVapor"}
|
14 |
+
neo_task_types = {k: NEONode(v, k) for k, v in _name_to_type.items()}
|
neo_reader/multitask_dataset.py
ADDED
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""MultiTask Dataset module compatible with torch.utils.data.Dataset & DataLoader."""
|
3 |
+
from __future__ import annotations
|
4 |
+
from pathlib import Path
|
5 |
+
from argparse import ArgumentParser
|
6 |
+
from pprint import pprint
|
7 |
+
from natsort import natsorted
|
8 |
+
from loguru import logger
|
9 |
+
import torch as tr
|
10 |
+
import numpy as np
|
11 |
+
from torch.utils.data import Dataset, DataLoader
|
12 |
+
from lovely_tensors import monkey_patch
|
13 |
+
|
14 |
+
monkey_patch()
|
15 |
+
BuildDatasetTuple = tuple[dict[str, list[Path]], list[str]]
|
16 |
+
MultiTaskItem = tuple[dict[str, tr.Tensor], str, list[str]] # [{task: data}, stem(name) | list[stem(name)], [tasks]]
|
17 |
+
|
18 |
+
class NpzRepresentation:
|
19 |
+
"""Generic Task with data read from/saved to npz files. Tries to read data as-is from disk and store it as well"""
|
20 |
+
def __init__(self, name: str):
|
21 |
+
self.name = name
|
22 |
+
|
23 |
+
def load_from_disk(self, path: Path) -> tr.Tensor:
|
24 |
+
"""Reads the npz data from the disk and transforms it properly"""
|
25 |
+
data = np.load(path, allow_pickle=False)
|
26 |
+
data = data if isinstance(data, np.ndarray) else data["arr_0"] # in case on npz, we need this as well
|
27 |
+
return tr.from_numpy(data) # can be uint8, float16, float32 etc.
|
28 |
+
|
29 |
+
def save_to_disk(self, data: tr.Tensor, path: Path):
|
30 |
+
"""stores this item to the disk which can then be loaded via `load_from_disk`"""
|
31 |
+
np.save(path, data.cpu().numpy(), allow_pickle=False)
|
32 |
+
|
33 |
+
def plot_fn(self, x: tr.Tensor) -> np.ndarray:
|
34 |
+
"""very basic implementation of converting this representation to a viewable image. You should overwrite this"""
|
35 |
+
assert isinstance(x, tr.Tensor), type(x)
|
36 |
+
if len(x.shape) == 2: x = x.unsqueeze(-1)
|
37 |
+
assert len(x.shape) == 3, x.shape # guaranteed to be (H, W, C) at this point
|
38 |
+
if x.shape[-1] != 3: x = x[..., 0:1]
|
39 |
+
if x.shape[-1] == 1: x = x.repeat(1, 1, 3)
|
40 |
+
x = x.nan_to_num(0).cpu().numpy() # guaranteed to be (H, W, 3) at this point hopefully
|
41 |
+
_min, _max = x.min((0, 1), keepdims=True), x.max((0, 1), keepdims=True)
|
42 |
+
if x.dtype != np.uint8: x = np.nan_to_num((x - _min) / (_max - _min) * 255, 0).astype(np.uint8)
|
43 |
+
return x
|
44 |
+
|
45 |
+
def __repr__(self):
|
46 |
+
return str(self)
|
47 |
+
|
48 |
+
def __str__(self):
|
49 |
+
return f"{str(type(self)).split('.')[-1][0:-2]}({self.name})"
|
50 |
+
|
51 |
+
class MultiTaskDataset(Dataset):
|
52 |
+
"""
|
53 |
+
MultiTaskDataset implementation. Reads data from npz files and returns them as a dict.
|
54 |
+
|
55 |
+
Parameters:
|
56 |
+
- path: Path to the directory containing the npz files.
|
57 |
+
- task_names: List of tasks that are present in the dataset. If set to None, will infer from the files on disk.
|
58 |
+
- handle_missing_data: Modes to handle missing data. Valid options are:
|
59 |
+
- drop: Drop the data point if any of the representations is missing.
|
60 |
+
- fill_none: Fill the missing data with Nones.
|
61 |
+
|
62 |
+
Expected directory structure:
|
63 |
+
path/
|
64 |
+
- task_1/0.npz, ..., N.npz
|
65 |
+
- ...
|
66 |
+
- task_n/0.npz, ..., N.npz
|
67 |
+
|
68 |
+
Names can be in a different format (i.e. 2022-01-01.npz), but must be consistent and equal across all tasks.
|
69 |
+
"""
|
70 |
+
|
71 |
+
def __init__(self, path: Path, task_names: list[str] | None = None, handle_missing_data: str = "fill_none",
|
72 |
+
files_suffix: str = "npz", task_types: dict[str, type] = None):
|
73 |
+
assert Path(path).exists(), f"Provided path '{path}' doesn't exist!"
|
74 |
+
assert handle_missing_data in ("drop", "fill_none"), f"Invalid handle_missing_data mode: {handle_missing_data}"
|
75 |
+
assert files_suffix == "npz", "Only npz supported right now (though trivial to update)"
|
76 |
+
self.path = Path(path).absolute()
|
77 |
+
self.handle_missing_data = handle_missing_data
|
78 |
+
self.suffix = files_suffix
|
79 |
+
self.all_files_per_repr = self._get_all_npz_files()
|
80 |
+
self.files_per_repr, self.file_names = self._build_dataset() # these are filtered by 'drop' or 'fill_none' logic
|
81 |
+
if task_types is None:
|
82 |
+
logger.debug("No explicit task types. Defaulting all of them to NpzRepresentation.")
|
83 |
+
task_types = {}
|
84 |
+
|
85 |
+
if task_names is None:
|
86 |
+
task_names = list(self.files_per_repr.keys())
|
87 |
+
logger.debug(f"No explicit tasks provided. Using all of them as read from the paths ({len(task_names)}).")
|
88 |
+
self.task_types = {k: task_types.get(k, NpzRepresentation) for k in task_names}
|
89 |
+
assert all(isinstance(x, str) for x in task_names), tuple(zip(task_names, (type(x) for x in task_names)))
|
90 |
+
self.task_names = sorted(task_names)
|
91 |
+
self._data_shape: tuple[int, ...] | None = None
|
92 |
+
self._tasks: list[NpzRepresentation] | None = None
|
93 |
+
self.name_to_task = {task.name: task for task in self.tasks}
|
94 |
+
logger.info(f"Tasks used in this dataset: {self.task_names}")
|
95 |
+
|
96 |
+
# Public methods and properties
|
97 |
+
|
98 |
+
@property
|
99 |
+
def data_shape(self) -> dict[str, tuple[int, ...]]:
|
100 |
+
"""Returns a {task: shape_tuple} for all representations. At least one npz file must exist for each."""
|
101 |
+
first_npz = {task: [_v for _v in files if _v is not None][0] for task, files in self.files_per_repr.items()}
|
102 |
+
data_shape = {task: self.name_to_task[task].load_from_disk(first_npz[task]).shape for task in self.task_names}
|
103 |
+
return data_shape
|
104 |
+
|
105 |
+
@property
|
106 |
+
def tasks(self) -> list[NpzRepresentation]:
|
107 |
+
"""
|
108 |
+
Returns a list of instantiated tasks in the same order as self.task_names. Overwrite this to add
|
109 |
+
new tasks and semantics (i.e. plot_fn or doing some preprocessing after loading from disk in some tasks.
|
110 |
+
"""
|
111 |
+
if self._tasks is not None:
|
112 |
+
return self._tasks
|
113 |
+
self._tasks = []
|
114 |
+
for task_name in self.task_names:
|
115 |
+
t = self.task_types[task_name]
|
116 |
+
if not isinstance(t, NpzRepresentation):
|
117 |
+
t = t(task_name)
|
118 |
+
self._tasks.append(t)
|
119 |
+
assert all(t.name == t_n for t, t_n in zip(self._tasks, self.task_names)), (self._task_names, self._tasks)
|
120 |
+
return self._tasks
|
121 |
+
|
122 |
+
def collate_fn(self, items: list[MultiTaskItem]) -> MultiTaskItem:
|
123 |
+
"""
|
124 |
+
given a list of items (i.e. from a reader[n:n+k] call), return the item batched on 1st dimension.
|
125 |
+
Nones (missing data points) are turned into zeros as per the data shape of that dim.
|
126 |
+
"""
|
127 |
+
assert all(item[2] == self.task_names for item in items), ((item[2] for item in items), self.task_names)
|
128 |
+
items_name = [item[1] for item in items]
|
129 |
+
res = {k: tr.zeros(len(items), *self.data_shape[k]).float() for k in self.task_names} # float32 always
|
130 |
+
for i in range(len(items)):
|
131 |
+
for k in self.task_names:
|
132 |
+
res[k][i] = items[i][0][k] if items[i][0][k] is not None else float("nan")
|
133 |
+
return res, items_name, self.task_names
|
134 |
+
|
135 |
+
# Private methods
|
136 |
+
|
137 |
+
def _get_all_npz_files(self) -> dict[str, list[Path]]:
|
138 |
+
"""returns a dict of form: {"rgb": ["0.npz", "1.npz", ..., "N.npz"]}"""
|
139 |
+
in_files = {}
|
140 |
+
all_repr_dirs: list[str] = [x.name for x in self.path.iterdir() if x.is_dir()]
|
141 |
+
for repr_dir_name in all_repr_dirs:
|
142 |
+
dir_name = self.path / repr_dir_name
|
143 |
+
if all(f.is_dir() for f in dir_name.iterdir()): # dataset is stored as repr/part_x/0.npz, ..., part_k/n.npz
|
144 |
+
all_files = []
|
145 |
+
for part in dir_name.iterdir():
|
146 |
+
all_files.extend(part.glob(f"*.{self.suffix}"))
|
147 |
+
else: # dataset is stored as repr/0.npz, ..., repr/n.npz
|
148 |
+
all_files = dir_name.glob(f"*.{self.suffix}")
|
149 |
+
in_files[repr_dir_name] = natsorted(all_files, key=lambda x: x.name) # important: use natsorted() here
|
150 |
+
assert not any(len(x) == 0 for x in in_files.values()), f"{ [k for k, v in in_files.items() if len(v) == 0] }"
|
151 |
+
return in_files
|
152 |
+
|
153 |
+
def _build_dataset_drop(self) -> BuildDatasetTuple:
|
154 |
+
in_files = self.all_files_per_repr
|
155 |
+
name_to_node_path = {k: {_v.name: _v for _v in v} for k, v in in_files.items()} # {node: {name: path}}
|
156 |
+
common = set(x.name for x in next(iter(in_files.values())))
|
157 |
+
nodes = in_files.keys()
|
158 |
+
for node in nodes:
|
159 |
+
common = common.intersection([f.name for f in in_files[node]])
|
160 |
+
assert len(common) > 0, f"Node '{node}' made the intersection null"
|
161 |
+
common = natsorted(list(common))
|
162 |
+
logger.info(f"Found {len(common)} data points for each node ({len(nodes)} nodes).")
|
163 |
+
files_per_repr = {node: [name_to_node_path[node][x] for x in common] for node in nodes}
|
164 |
+
assert len(files_per_repr) > 0
|
165 |
+
return files_per_repr, common
|
166 |
+
|
167 |
+
def _build_dataset_fill_none(self) -> BuildDatasetTuple:
|
168 |
+
in_files = self.all_files_per_repr
|
169 |
+
name_to_node_path = {k: {_v.name: _v for _v in v} for k, v in in_files.items()}
|
170 |
+
all_files = set(x.name for x in next(iter(in_files.values())))
|
171 |
+
nodes = in_files.keys()
|
172 |
+
for node in nodes:
|
173 |
+
all_files = all_files.union([f.name for f in in_files[node]])
|
174 |
+
all_files = natsorted(list(all_files))
|
175 |
+
logger.info(f"Found {len(all_files)} data points as union of all nodes' data ({len(nodes)} nodes).")
|
176 |
+
|
177 |
+
files_per_repr = {node: [] for node in nodes}
|
178 |
+
for node in nodes:
|
179 |
+
for file_name in all_files:
|
180 |
+
file_path = name_to_node_path[node].get(file_name, None)
|
181 |
+
files_per_repr[node].append(file_path)
|
182 |
+
assert len(files_per_repr) > 0
|
183 |
+
return files_per_repr, all_files
|
184 |
+
|
185 |
+
def _build_dataset(self) -> BuildDatasetTuple:
|
186 |
+
logger.debug(f"Building dataset from: '{self.path}'")
|
187 |
+
if self.handle_missing_data == "drop":
|
188 |
+
return self._build_dataset_drop()
|
189 |
+
else:
|
190 |
+
return self._build_dataset_fill_none()
|
191 |
+
|
192 |
+
# Python magic methods (pretty printing the reader object, reader[0], len(reader) etc.)
|
193 |
+
|
194 |
+
def __getitem__(self, index: int | slice | list[int] | tuple) -> MultiTaskItem:
|
195 |
+
"""Read the data all the desired nodes"""
|
196 |
+
assert isinstance(index, (int, slice, list, tuple)), type(index)
|
197 |
+
if isinstance(index, slice):
|
198 |
+
assert index.start is not None and index.stop is not None and index.step is None, "Only reader[l:r] allowed"
|
199 |
+
index = list(range(index.stop)[index])
|
200 |
+
if isinstance(index, (list, tuple)):
|
201 |
+
return self.collate_fn([self.__getitem__(ix) for ix in index])
|
202 |
+
res = {}
|
203 |
+
item_name = self.file_names[index]
|
204 |
+
|
205 |
+
for _repr in self.tasks:
|
206 |
+
file_path = self.files_per_repr[_repr.name][index]
|
207 |
+
file_path = file_path.resolve() if file_path is not None else None
|
208 |
+
assert self.handle_missing_data == "fill_none" or (file_path is not None and file_path.exists()), item_name
|
209 |
+
item = _repr.load_from_disk(file_path) if file_path is not None and file_path.exists() else None
|
210 |
+
res[_repr.name] = item
|
211 |
+
return (res, item_name, self.task_names)
|
212 |
+
|
213 |
+
def __len__(self) -> int:
|
214 |
+
return len(self.files_per_repr[self.task_names[0]]) # all of them have the same number (filled with None or not)
|
215 |
+
|
216 |
+
def __str__(self):
|
217 |
+
f_str = f"[{str(type(self)).rsplit('.', maxsplit=1)[-1][0:-2]}]"
|
218 |
+
f_str += f"\n - Path: '{self.path}'"
|
219 |
+
f_str += f"\n - Only full data: {self.handle_missing_data == 'drop'}"
|
220 |
+
f_str += f"\n - Representations ({len(self.tasks)}): {self.tasks}"
|
221 |
+
f_str += f"\n - Length: {len(self)}"
|
222 |
+
return f_str
|
223 |
+
|
224 |
+
def __repr__(self):
|
225 |
+
return str(self)
|
226 |
+
|
227 |
+
def main():
|
228 |
+
"""main fn"""
|
229 |
+
parser = ArgumentParser()
|
230 |
+
parser.add_argument("dataset_path", type=Path)
|
231 |
+
parser.add_argument("--handle_missing_data", choices=("drop", "fill_none"), default="fill_none")
|
232 |
+
args = parser.parse_args()
|
233 |
+
|
234 |
+
reader = MultiTaskDataset(args.dataset_path, task_names=None, handle_missing_data=args.handle_missing_data)
|
235 |
+
print(reader)
|
236 |
+
print(f"Shape: {reader.data_shape}")
|
237 |
+
|
238 |
+
rand_ix = np.random.randint(len(reader))
|
239 |
+
data, name, repr_names = reader[rand_ix] # get a random single data point
|
240 |
+
print(f"Name: {name}. Nodes: {repr_names}")
|
241 |
+
pprint({k: v for k, v in data.items()})
|
242 |
+
|
243 |
+
data, name, repr_names = reader[rand_ix: min(len(reader), rand_ix + 5)] # get a random batch
|
244 |
+
print(f"Name: {name}. Nodes: {repr_names}")
|
245 |
+
pprint({k: v for k, v in data.items()}) # Nones are converted to 0s automagically
|
246 |
+
|
247 |
+
loader = DataLoader(reader, collate_fn=reader.collate_fn, batch_size=5, shuffle=True)
|
248 |
+
data, name, repr_names = next(iter(loader)) # get a random batch using torch DataLoader
|
249 |
+
print(f"Name: {name}. Nodes: {repr_names}")
|
250 |
+
pprint({k: v for k, v in data.items()}) # Nones are converted to 0s automagically
|
251 |
+
|
252 |
+
if __name__ == "__main__":
|
253 |
+
main()
|
neo_reader/neo_node.py
CHANGED
@@ -2,6 +2,10 @@
|
|
2 |
from pathlib import Path
|
3 |
import numpy as np
|
4 |
from codecs import encode
|
|
|
|
|
|
|
|
|
5 |
|
6 |
def _cmap_hex_to_rgb(hex_list):
|
7 |
res = []
|
@@ -28,7 +32,7 @@ def _act_to_cmap(act_file: Path) -> np.ndarray:
|
|
28 |
rgb_colors = _cmap_hex_to_rgb(hex_colors)
|
29 |
return rgb_colors
|
30 |
|
31 |
-
class NEONode:
|
32 |
"""NEO nodes implementation in ngclib repository"""
|
33 |
def __init__(self, node_type: str, name: str):
|
34 |
# all neo nodes have 1 dimension.
|
@@ -42,30 +46,25 @@ class NEONode:
|
|
42 |
self.name = name
|
43 |
self.cmap = _act_to_cmap(Path(__file__).absolute().parent / "cmaps" / f"{self.node_type}.act")
|
44 |
|
45 |
-
|
46 |
-
|
|
|
|
|
47 |
if y.shape[0] == 1: # pylint: disable=unsubscriptable-object
|
48 |
y = y[0] # pylint: disable=unsubscriptable-object
|
49 |
if len(y.shape) == 2:
|
50 |
y = np.expand_dims(y, axis=-1)
|
51 |
y[np.isnan(y)] = 0
|
52 |
-
return y.
|
53 |
|
54 |
-
|
55 |
-
|
|
|
56 |
|
57 |
-
def plot_fn(self, x:
|
58 |
-
|
59 |
-
return x
|
60 |
-
y = np.clip(x, 0, 1)
|
61 |
y = y * 255
|
62 |
y[y == 0] = 255
|
63 |
y = y.astype(np.uint).squeeze()
|
64 |
y_rgb = self.cmap[y].astype(np.uint8)
|
65 |
return y_rgb
|
66 |
-
|
67 |
-
def __repr__(self):
|
68 |
-
return self.name
|
69 |
-
|
70 |
-
def __str__(self):
|
71 |
-
return f"NEONode({self.name})"
|
|
|
2 |
from pathlib import Path
|
3 |
import numpy as np
|
4 |
from codecs import encode
|
5 |
+
from overrides import overrides
|
6 |
+
import torch as tr
|
7 |
+
|
8 |
+
from .multitask_dataset import NpzRepresentation
|
9 |
|
10 |
def _cmap_hex_to_rgb(hex_list):
|
11 |
res = []
|
|
|
32 |
rgb_colors = _cmap_hex_to_rgb(hex_colors)
|
33 |
return rgb_colors
|
34 |
|
35 |
+
class NEONode(NpzRepresentation):
|
36 |
"""NEO nodes implementation in ngclib repository"""
|
37 |
def __init__(self, node_type: str, name: str):
|
38 |
# all neo nodes have 1 dimension.
|
|
|
46 |
self.name = name
|
47 |
self.cmap = _act_to_cmap(Path(__file__).absolute().parent / "cmaps" / f"{self.node_type}.act")
|
48 |
|
49 |
+
@overrides
|
50 |
+
def load_from_disk(self, path: Path) -> tr.Tensor:
|
51 |
+
data = np.load(path, allow_pickle=False)
|
52 |
+
y = data if isinstance(data, np.ndarray) else data["arr_0"] # in case on npz, we need this as well
|
53 |
if y.shape[0] == 1: # pylint: disable=unsubscriptable-object
|
54 |
y = y[0] # pylint: disable=unsubscriptable-object
|
55 |
if len(y.shape) == 2:
|
56 |
y = np.expand_dims(y, axis=-1)
|
57 |
y[np.isnan(y)] = 0
|
58 |
+
return tr.from_numpy(y).float()
|
59 |
|
60 |
+
@overrides
|
61 |
+
def save_to_disk(self, data: tr.Tensor, path: Path):
|
62 |
+
return super().save_to_disk(data.clip(0, 1), path)
|
63 |
|
64 |
+
def plot_fn(self, x: tr.Tensor) -> np.ndarray:
|
65 |
+
y = np.clip(x.numpy(), 0, 1)
|
|
|
|
|
66 |
y = y * 255
|
67 |
y[y == 0] = 255
|
68 |
y = y.astype(np.uint).squeeze()
|
69 |
y_rgb = self.cmap[y].astype(np.uint8)
|
70 |
return y_rgb
|
|
|
|
|
|
|
|
|
|
|
|
neo_reader/neo_reader.py
DELETED
@@ -1,183 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python3
|
2 |
-
"""NEO Reader module"""
|
3 |
-
from __future__ import annotations
|
4 |
-
from pathlib import Path
|
5 |
-
from argparse import Namespace, ArgumentParser
|
6 |
-
from pprint import pprint
|
7 |
-
from natsort import natsorted
|
8 |
-
from loguru import logger
|
9 |
-
import numpy as np
|
10 |
-
from torch.utils.data import Dataset
|
11 |
-
|
12 |
-
try:
|
13 |
-
from .neo_node import NEONode
|
14 |
-
except ImportError:
|
15 |
-
from neo_node import NEONode
|
16 |
-
|
17 |
-
class NEOReader(Dataset):
|
18 |
-
"""
|
19 |
-
NEO Reader implementation. Reads data from npz files and returns them as a dict.
|
20 |
-
|
21 |
-
Parameters:
|
22 |
-
- path: Path to the directory containing the npz files.
|
23 |
-
- nodes: List of nodes that are present in the dataset.
|
24 |
-
- handle_missing_data: Modes to handle missing data. Valid options are:
|
25 |
-
- drop: Drop the data point if any of the nodes is missing.
|
26 |
-
- fill_none: Fill the missing data with Nones.
|
27 |
-
|
28 |
-
Expected directory structure:
|
29 |
-
path/
|
30 |
-
- node_1/0.npz, ..., N.npz
|
31 |
-
- ...
|
32 |
-
- node_n/0.npz, ..., N.npz
|
33 |
-
|
34 |
-
Names can be in a different format (i.e. 2022-01-01.npz), but must be consistent and equal across all nodes.
|
35 |
-
"""
|
36 |
-
# The default names and their corresponding types for NEO datasets (1week or 1month)
|
37 |
-
name_to_type = {"AOD": "AerosolOpticalDepth", "BS_ALBEDO": "Albedo", "CHLORA": "Chlorophyll",
|
38 |
-
"CLD_FR": "CloudFraction", "CLD_RD": "CloudParticleRadius", "CLD_WP": "CloudWaterContent",
|
39 |
-
"COT": "CloudOpticalThickness", "CO_M": "CarbonMonoxide", "FIRE": "Fire",
|
40 |
-
"INSOL": "SolarInsolation", "LAI": "LeafAreaIndex", "LSTD": "Temperature",
|
41 |
-
"LSTD_AN": "TemperatureAnomaly", "LSTN": "Temperature", "LSTN_AN": "TemperatureAnomaly",
|
42 |
-
"LWFLUX": "OutgoingLongwaveRadiation", "NDVI": "Vegetation", "NETFLUX": "NetRadiation",
|
43 |
-
"NO2": "NitrogenDioxide", "OZONE": "Ozone", "SNOWC": "SnowCover", "SST": "SeaSurfaceTemperature",
|
44 |
-
"SWFLUX": "ReflectedShortwaveRadiation", "WV": "WaterVapor"}
|
45 |
-
|
46 |
-
def __init__(self, path: Path, nodes: list[str] | None = None, handle_missing_data: str = "fill_none"):
|
47 |
-
assert path.exists(), f"Provided path '{path}' doesn't exist!"
|
48 |
-
assert handle_missing_data in ("drop", "fill_none"), f"Invalid handle_missing_data mode: {handle_missing_data}"
|
49 |
-
self.path = Path(path).absolute()
|
50 |
-
self.files_per_node, self.file_names = self._build_dataset(handle_missing_data)
|
51 |
-
if nodes is None:
|
52 |
-
nodes = list(self.files_per_node.keys())
|
53 |
-
logger.debug("No nodes provided. Using all of them as read from the paths.")
|
54 |
-
assert all(isinstance(x, str) for x in nodes), tuple(zip(nodes, (type(x) for x in nodes)))
|
55 |
-
|
56 |
-
self.node_names = sorted(nodes)
|
57 |
-
logger.info(f"Nodes used in this reader: {self.node_names}")
|
58 |
-
self.nodes = [NEONode(NEOReader.name_to_type[x], x) for x in self.node_names]
|
59 |
-
self.handle_missing_data = handle_missing_data
|
60 |
-
|
61 |
-
self._images_shape: tuple[int, int, int] | None = None
|
62 |
-
|
63 |
-
# Public methods and properties
|
64 |
-
|
65 |
-
@property
|
66 |
-
def images_shape(self) -> tuple[int, int, int]:
|
67 |
-
"""Returns a triple of (H, W, C) for all images shape, which are assumed to be consistent for all data points"""
|
68 |
-
if self._images_shape is None:
|
69 |
-
i = 0
|
70 |
-
while True:
|
71 |
-
for img in self[i][0].values():
|
72 |
-
if img is not None:
|
73 |
-
self._images_shape = img.shape
|
74 |
-
assert len(self._images_shape) == 3 and self._images_shape[-1] == 1, self._images_shape
|
75 |
-
return self._images_shape
|
76 |
-
i += 1
|
77 |
-
return self._images_shape
|
78 |
-
|
79 |
-
# Private methods
|
80 |
-
|
81 |
-
def _get_all_npz_files(self) -> dict[str, list[Path]]:
|
82 |
-
in_files = {}
|
83 |
-
nodes = [x for x in self.path.iterdir() if x.is_dir()]
|
84 |
-
for node in nodes:
|
85 |
-
dir_name = self.path / node.name
|
86 |
-
items = dir_name.glob("*.npz")
|
87 |
-
items = set(natsorted(items, key=lambda x: x.name))
|
88 |
-
in_files[node.name] = items
|
89 |
-
assert not any(len(x) == 0 for x in in_files.values()), f"{ [k for k, v in in_files.items() if len(v) == 0] }"
|
90 |
-
return in_files
|
91 |
-
|
92 |
-
def _build_dataset_drop(self) -> tuple[dict[str, list[Path]], list[str]]:
|
93 |
-
in_files = self._get_all_npz_files()
|
94 |
-
common = set(x.name for x in next(iter(in_files.values())))
|
95 |
-
nodes = in_files.keys()
|
96 |
-
for node in nodes:
|
97 |
-
common = common.intersection([f.name for f in in_files[node]])
|
98 |
-
assert len(common) > 0, f"Node '{node}' made the intersection null"
|
99 |
-
common = natsorted(list(common))
|
100 |
-
logger.info(f"Found {len(common)} data points for each node ({len(nodes)} nodes).")
|
101 |
-
files_per_node = {node: [self.path / node / x for x in common] for node in nodes}
|
102 |
-
return files_per_node, common
|
103 |
-
|
104 |
-
def _build_dataset_fill_none(self) -> tuple[dict[str, list[Path]], list[str]]:
|
105 |
-
in_files = self._get_all_npz_files()
|
106 |
-
all_files = set(x.name for x in next(iter(in_files.values())))
|
107 |
-
nodes = in_files.keys()
|
108 |
-
for node in nodes:
|
109 |
-
all_files = all_files.union([f.name for f in in_files[node]])
|
110 |
-
all_files = natsorted(list(all_files))
|
111 |
-
logger.info(f"Found {len(all_files)} data points as union of all nodes' data ({len(nodes)} nodes).")
|
112 |
-
|
113 |
-
files_per_node = {node: [] for node in nodes}
|
114 |
-
in_file_names = {node: [f.name for f in in_files[node]] for node in nodes}
|
115 |
-
for node in nodes:
|
116 |
-
for file_name in all_files:
|
117 |
-
file_path = self.path / node / file_name if file_name in in_file_names[node] else None
|
118 |
-
files_per_node[node].append(file_path)
|
119 |
-
return files_per_node, all_files
|
120 |
-
|
121 |
-
def _build_dataset(self, handle_missing_data: str) -> tuple[dict[str, list[Path]], list[str]]:
|
122 |
-
logger.debug(f"Building dataset from: '{self.path}'")
|
123 |
-
if handle_missing_data == "drop":
|
124 |
-
return self._build_dataset_drop()
|
125 |
-
else:
|
126 |
-
return self._build_dataset_fill_none()
|
127 |
-
|
128 |
-
def _read_node_data(self, node: NEONode, index: int) -> np.ndarray | None:
|
129 |
-
"""Reads the npz data from the disk and transforms it properly"""
|
130 |
-
file_path = self.files_per_node[node.name][index]
|
131 |
-
if file_path is None:
|
132 |
-
return None
|
133 |
-
item = np.load(file_path, allow_pickle=True)["arr_0"]
|
134 |
-
transformed_item = node.load_from_disk(item)
|
135 |
-
return transformed_item
|
136 |
-
|
137 |
-
# Python magic methods (pretty printing the reader object, reader[0], len(reader) etc.)
|
138 |
-
|
139 |
-
def __getitem__(self, index: int) -> tuple[dict[str, np.ndarray], str, list[str]]:
|
140 |
-
"""Read the data all the desired nodes"""
|
141 |
-
assert isinstance(index, int), type(index)
|
142 |
-
res = {}
|
143 |
-
item_name = self.file_names[index]
|
144 |
-
|
145 |
-
for node in self.nodes:
|
146 |
-
item = self._read_node_data(node, index)
|
147 |
-
assert self.handle_missing_data == "fill_none" or item is not None, item_name
|
148 |
-
res[node.name] = item
|
149 |
-
return (res, item_name, self.node_names)
|
150 |
-
|
151 |
-
def __len__(self) -> int:
|
152 |
-
return len(self.files_per_node[self.node_names[0]])
|
153 |
-
|
154 |
-
def __str__(self):
|
155 |
-
f_str = "[NGC Npz Reader]"
|
156 |
-
f_str += f"\n - Path: '{self.path}'"
|
157 |
-
f_str += f"\n - Only full data: {self.handle_missing_data == 'drop'}"
|
158 |
-
f_str += f"\n - Nodes ({len(self.nodes)}): {self.nodes}"
|
159 |
-
f_str += f"\n - Length: {len(self)}"
|
160 |
-
return f_str
|
161 |
-
|
162 |
-
def __repr__(self):
|
163 |
-
return str(self)
|
164 |
-
|
165 |
-
def get_args() -> Namespace:
|
166 |
-
"""cli args"""
|
167 |
-
parser = ArgumentParser()
|
168 |
-
parser.add_argument("dataset_path", type=Path)
|
169 |
-
parser.add_argument("--handle_missing_data", choices=("drop", "fill_none"), default="fill_none")
|
170 |
-
args = parser.parse_args()
|
171 |
-
return args
|
172 |
-
|
173 |
-
def main(args: Namespace):
|
174 |
-
"""main fn"""
|
175 |
-
reader = NEOReader(args.dataset_path, nodes=None, handle_missing_data=args.handle_missing_data)
|
176 |
-
print(reader)
|
177 |
-
print(f"Shape: {reader.images_shape}")
|
178 |
-
data, name, node_names = reader[np.random.randint(len(reader))]
|
179 |
-
print(f"Name: {name}. Nodes: {node_names}")
|
180 |
-
pprint({k: (v.shape if v is not None else None) for k, v in data.items()})
|
181 |
-
|
182 |
-
if __name__ == "__main__":
|
183 |
-
main(get_args())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
neo_viewer.ipynb
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:694e5b784a08a3aaa7f30d68026a80ba9dc7dd247912f038339bee9a24ba7673
|
3 |
+
size 12434984
|