little fixes
Browse files
neo_reader/multitask_dataset.py
CHANGED
@@ -28,7 +28,7 @@ class NpzRepresentation:
|
|
28 |
|
29 |
def save_to_disk(self, data: tr.Tensor, path: Path):
|
30 |
"""stores this item to the disk which can then be loaded via `load_from_disk`"""
|
31 |
-
np.save(path, data.cpu().numpy(), allow_pickle=False)
|
32 |
|
33 |
def plot_fn(self, x: tr.Tensor) -> np.ndarray:
|
34 |
"""very basic implementation of converting this representation to a viewable image. You should overwrite this"""
|
@@ -37,7 +37,7 @@ class NpzRepresentation:
|
|
37 |
assert len(x.shape) == 3, x.shape # guaranteed to be (H, W, C) at this point
|
38 |
if x.shape[-1] != 3: x = x[..., 0:1]
|
39 |
if x.shape[-1] == 1: x = x.repeat(1, 1, 3)
|
40 |
-
x = x.nan_to_num(0).cpu().numpy() # guaranteed to be (H, W, 3) at this point hopefully
|
41 |
_min, _max = x.min((0, 1), keepdims=True), x.max((0, 1), keepdims=True)
|
42 |
if x.dtype != np.uint8: x = np.nan_to_num((x - _min) / (_max - _min) * 255, 0).astype(np.uint8)
|
43 |
return x
|
@@ -119,7 +119,7 @@ class MultiTaskDataset(Dataset):
|
|
119 |
for task_name in self.task_names:
|
120 |
t = self.task_types[task_name]
|
121 |
try:
|
122 |
-
t = t(task_name)
|
123 |
except Exception:
|
124 |
pass
|
125 |
self._tasks.append(t)
|
|
|
28 |
|
29 |
def save_to_disk(self, data: tr.Tensor, path: Path):
|
30 |
"""stores this item to the disk which can then be loaded via `load_from_disk`"""
|
31 |
+
np.save(path, data.cpu().detach().numpy(), allow_pickle=False)
|
32 |
|
33 |
def plot_fn(self, x: tr.Tensor) -> np.ndarray:
|
34 |
"""very basic implementation of converting this representation to a viewable image. You should overwrite this"""
|
|
|
37 |
assert len(x.shape) == 3, x.shape # guaranteed to be (H, W, C) at this point
|
38 |
if x.shape[-1] != 3: x = x[..., 0:1]
|
39 |
if x.shape[-1] == 1: x = x.repeat(1, 1, 3)
|
40 |
+
x = x.nan_to_num(0).cpu().detach().numpy() # guaranteed to be (H, W, 3) at this point hopefully
|
41 |
_min, _max = x.min((0, 1), keepdims=True), x.max((0, 1), keepdims=True)
|
42 |
if x.dtype != np.uint8: x = np.nan_to_num((x - _min) / (_max - _min) * 255, 0).astype(np.uint8)
|
43 |
return x
|
|
|
119 |
for task_name in self.task_names:
|
120 |
t = self.task_types[task_name]
|
121 |
try:
|
122 |
+
t = t(task_name) # hack for not isinstance(self.task_types, NpzRepresentation) but callable
|
123 |
except Exception:
|
124 |
pass
|
125 |
self._tasks.append(t)
|
neo_reader/neo_node.py
CHANGED
@@ -33,7 +33,7 @@ def _act_to_cmap(act_file: Path) -> np.ndarray:
|
|
33 |
return rgb_colors
|
34 |
|
35 |
class NEONode(NpzRepresentation):
|
36 |
-
"""NEO nodes implementation
|
37 |
def __init__(self, node_type: str, name: str):
|
38 |
self.node_type = node_type
|
39 |
self.name = name
|
@@ -45,11 +45,9 @@ class NEONode(NpzRepresentation):
|
|
45 |
def load_from_disk(self, path: Path) -> tr.Tensor:
|
46 |
data = np.load(path, allow_pickle=False)
|
47 |
y = data if isinstance(data, np.ndarray) else data["arr_0"] # in case on npz, we need this as well
|
48 |
-
if y.shape[0] == 1
|
49 |
-
|
50 |
-
|
51 |
-
y = np.expand_dims(y, axis=-1)
|
52 |
-
y[np.isnan(y)] = 0
|
53 |
return tr.from_numpy(y).float()
|
54 |
|
55 |
@overrides
|
@@ -57,9 +55,9 @@ class NEONode(NpzRepresentation):
|
|
57 |
return super().save_to_disk(data.clip(0, 1), path)
|
58 |
|
59 |
def plot_fn(self, x: tr.Tensor) -> np.ndarray:
|
60 |
-
y = np.clip(x.cpu().numpy(), 0, 1)
|
61 |
y = y * 255
|
62 |
-
y[y
|
63 |
y = y.astype(np.uint).squeeze()
|
64 |
y_rgb = self.cmap[y].astype(np.uint8)
|
65 |
return y_rgb
|
|
|
33 |
return rgb_colors
|
34 |
|
35 |
class NEONode(NpzRepresentation):
|
36 |
+
"""NEO nodes implementation"""
|
37 |
def __init__(self, node_type: str, name: str):
|
38 |
self.node_type = node_type
|
39 |
self.name = name
|
|
|
45 |
def load_from_disk(self, path: Path) -> tr.Tensor:
|
46 |
data = np.load(path, allow_pickle=False)
|
47 |
y = data if isinstance(data, np.ndarray) else data["arr_0"] # in case on npz, we need this as well
|
48 |
+
y = y[0] if y.shape[0] == 1 else y # pylint: disable=unsubscriptable-object
|
49 |
+
y = np.expand_dims(y, axis=-1) if len(y.shape) == 2 else y
|
50 |
+
y[y == 0] = float("nan")
|
|
|
|
|
51 |
return tr.from_numpy(y).float()
|
52 |
|
53 |
@overrides
|
|
|
55 |
return super().save_to_disk(data.clip(0, 1), path)
|
56 |
|
57 |
def plot_fn(self, x: tr.Tensor) -> np.ndarray:
|
58 |
+
y = np.clip(x.cpu().detach().numpy(), 0, 1)
|
59 |
y = y * 255
|
60 |
+
y[np.isnan(y)] = 255
|
61 |
y = y.astype(np.uint).squeeze()
|
62 |
y_rgb = self.cmap[y].astype(np.uint8)
|
63 |
return y_rgb
|