Datasets:
Last commit not found
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""This loads the UnpredicTable-wiki-openmoko-org dataset.""" | |
import json | |
import os | |
import pandas as pd | |
import datasets | |
_CITATION = """\ | |
@misc{chan2022few, | |
author = {Chan, Jun Shern and Pieler, Michael and Jao, Jonathan and Scheurer, Jérémy and Perez, Ethan}, | |
title = {Few-shot Adaptation Works with UnpredicTable Data}, | |
publisher={arXiv}, | |
year = {2022}, | |
url = {https://arxiv.org/abs/2208.01009} | |
} | |
""" | |
_DESCRIPTION = """\ | |
The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance. For more details please see the accompanying dataset card. | |
""" | |
_HOMEPAGE = "https://ethanperez.net/unpredictable" | |
_LICENSE = "Apache 2.0" | |
_URL = "https://huggingface.co/datasets/MicPie/unpredictable_wiki-openmoko-org/resolve/main/data/unpredictable_wiki-openmoko-org.jsonl" | |
logger = datasets.logging.get_logger(__name__) | |
class UnpredicTable(datasets.GeneratorBasedBuilder): | |
""" | |
The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance. For more details please see the accompanying dataset card. | |
""" | |
VERSION = datasets.Version("1.0.0") | |
def _info(self): | |
features = datasets.Features( | |
{ | |
"task": datasets.Value("string"), | |
"input": datasets.Value("string"), | |
"output": datasets.Value("string"), | |
"options": datasets.Sequence([datasets.Value("string")]), | |
"pageTitle": datasets.Value("string"), | |
"outputColName": datasets.Value("string"), | |
"url": datasets.Value("string"), | |
"wdcFile": datasets.Value("string") | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
data_dir = dl_manager.download_and_extract(_URL) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"filepath": data_dir}, | |
), | |
] | |
def _generate_examples(self, filepath): | |
"""Yields examples.""" | |
with open(filepath, encoding="utf-8") as f: | |
for i, row in enumerate(f): | |
data = json.loads(row) | |
key = f"{data['task']}_{i}" | |
yield key, { | |
"task": data["task"], | |
"input": data["input"], | |
"output": data["output"], | |
"options": data["options"], | |
"pageTitle": data["pageTitle"], | |
"outputColName": data["outputColName"], | |
"url": data["url"], | |
"wdcFile": data["wdcFile"], | |
} | |