|
import os |
|
|
|
import datasets |
|
from datasets.tasks import ImageClassification |
|
|
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/MithatGuner/resistor/" |
|
_LICENSE = "Public Domain" |
|
_CITATION = """\ |
|
""" |
|
_CATEGORIES = ['resistor'] |
|
|
|
|
|
class RESISTORConfig(datasets.BuilderConfig): |
|
"""Builder Config for resistor""" |
|
|
|
def __init__(self, data_urls, **kwargs): |
|
""" |
|
BuilderConfig for resistor. |
|
Args: |
|
data_urls: `dict`, name to url to download the zip file from. |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(RESISTORConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs) |
|
self.data_urls = data_urls |
|
|
|
|
|
class RESISTOR(datasets.GeneratorBasedBuilder): |
|
"""resistor image classification dataset""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
BUILDER_CONFIGS = [ |
|
RESISTORConfig( |
|
name="full", |
|
description="Full version of resistor dataset.", |
|
data_urls={ |
|
"train": "https://huggingface.co/datasets/MithatGuner/resistor/resolve/main/data/train.zip", |
|
"validation": "https://huggingface.co/datasets/MithatGuner/resistor/resolve/main/data/valid.zip", |
|
"test": "https://huggingface.co/datasets/MithatGuner/resistor/resolve/main/data/test.zip", |
|
} |
|
, |
|
), |
|
RESISTORConfig( |
|
name="mini", |
|
description="Mini version of resistor dataset.", |
|
data_urls={ |
|
"train": "https://huggingface.co/datasets/MithatGuner/resistor/resolve/main/data/valid-mini.zip", |
|
"validation": "https://huggingface.co/datasets/MithatGuner/resistor/resolve/main/data/valid-mini.zip", |
|
"test": "https://huggingface.co/datasets/MithatGuner/resistor/resolve/main/data/valid-mini.zip", |
|
}, |
|
) |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
features=datasets.Features( |
|
{ |
|
"image_file_path": datasets.Value("string"), |
|
"image": datasets.Image(), |
|
"labels": datasets.features.ClassLabel(names=_CATEGORIES), |
|
} |
|
), |
|
supervised_keys=("image", "labels"), |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
license=_LICENSE, |
|
task_templates=[ImageClassification(image_column="image", label_column="labels")], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_files = dl_manager.download_and_extract(self.config.data_urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"files": dl_manager.iter_files([data_files["train"]]), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"files": dl_manager.iter_files([data_files["validation"]]), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"files": dl_manager.iter_files([data_files["test"]]), |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, files): |
|
for i, path in enumerate(files): |
|
file_name = os.path.basename(path) |
|
if file_name.endswith((".jpg", ".png", ".jpeg", ".bmp", ".tif", ".tiff")): |
|
yield i, { |
|
"image_file_path": path, |
|
"image": path, |
|
"labels": os.path.basename(os.path.dirname(path)), |
|
} |
|
|