File size: 3,945 Bytes
b9af16b
 
 
 
 
 
ff9b709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9af16b
 
 
 
 
 
 
 
 
8cf0fda
b9af16b
 
 
 
 
 
8cf0fda
b9af16b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cf0fda
b9af16b
 
 
 
 
8cf0fda
 
b9af16b
8cf0fda
 
 
b9af16b
 
8cf0fda
 
b9af16b
 
 
 
 
 
 
 
8cf0fda
b9af16b
 
 
 
8cf0fda
b9af16b
 
 
 
8cf0fda
 
b9af16b
 
8cf0fda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9af16b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
---

task_categories:
- object-detection
tags:
- roboflow
- roboflow2huggingface
dataset_info:
  config_name: full
  features:
  - name: image_id
    dtype: int64
  - name: image
    dtype: image
  - name: width
    dtype: int32
  - name: height
    dtype: int32
  - name: objects
    sequence:
    - name: id
      dtype: int64
    - name: area
      dtype: int64
    - name: bbox
      sequence: float32
      length: 4
    - name: category
      dtype:
        class_label:
          names:
            '0': resistor
  splits:
  - name: train
    num_bytes: 4166234.0
    num_examples: 126
  - name: validation
    num_bytes: 91766.0
    num_examples: 6
  - name: test
    num_bytes: 111846.0
    num_examples: 3
  download_size: 4342491
  dataset_size: 4369846.0
configs:
- config_name: full
  data_files:
  - split: train
    path: full/train-*
  - split: validation
    path: full/validation-*
  - split: test
    path: full/test-*
---


<div align="center">
  <img width="640" alt="MithatGuner/resistordataset" src="https://huggingface.co/datasets/MithatGuner/resistordataset/resolve/main/thumbnail.jpg">
</div>

### Dataset Labels

```

['resistor']

```


### Number of Images

```json

{'valid': 6, 'test': 3, 'train': 126}

```


### How to Use

- Install [datasets](https://pypi.org/project/datasets/):

```bash

pip install datasets

```

- Load the dataset:

```python

from datasets import load_dataset



ds = load_dataset("MithatGuner/resistordataset", name="full")

example = ds['train'][0]

```

### Roboflow Dataset Page
[https://universe.roboflow.com/harish-madhavan/resistordataset/dataset/1](https://universe.roboflow.com/harish-madhavan/resistordataset/dataset/1?ref=roboflow2huggingface)

### Citation

```

@misc{

                            resistordataset_dataset,

                            title = { ResistorDataset Dataset },

                            type = { Open Source Dataset },

                            author = { Harish Madhavan },

                            howpublished = { \\url{ https://universe.roboflow.com/harish-madhavan/resistordataset } },

                            url = { https://universe.roboflow.com/harish-madhavan/resistordataset },

                            journal = { Roboflow Universe },

                            publisher = { Roboflow },

                            year = { 2022 },

                            month = { sep },

                            note = { visited on 2024-07-16 },

                            }

```

### License
CC BY 4.0

### Dataset Summary
This dataset was exported via roboflow.com on December 7, 2022 at 8:42 AM GMT

Roboflow is an end-to-end computer vision platform that helps you
* collaborate with your team on computer vision projects
* collect & organize images
* understand unstructured image data
* annotate, and create datasets
* export, train, and deploy computer vision models
* use active learning to improve your dataset over time

It includes 135 images.
Resistor are annotated in COCO format.

The following pre-processing was applied to each image:
* Auto-orientation of pixel data (with EXIF-orientation stripping)
* Resize to 416x416 (Stretch)
* Auto-contrast via adaptive equalization

The following augmentation was applied to create 3 versions of each source image:
* 50% probability of horizontal flip
* 50% probability of vertical flip

The following transformations were applied to the bounding boxes of each image:
* 50% probability of horizontal flip
* 50% probability of vertical flip
* Equal probability of one of the following 90-degree rotations: none, clockwise, counter-clockwise, upside-down
* Randomly crop between 0 and 20 percent of the bounding box
* Random brigthness adjustment of between -25 and +25 percent
* Salt and pepper noise was applied to 5 percent of pixels