RichmondMongo commited on
Commit
6a5bd9b
·
verified ·
1 Parent(s): db64625

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +45 -0
README.md CHANGED
@@ -34,6 +34,51 @@ Each record in the dataset represents a news article about technology companies
34
  - description: A brief summary of the news article's content.
35
  - embedding: An array of numerical values representing the vector embedding for the article, generated using the OpenAI EMBEDDING_MODEL.
36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
  ## Usage
38
  The dataset is suited for a range of applications, including:
39
 
 
34
  - description: A brief summary of the news article's content.
35
  - embedding: An array of numerical values representing the vector embedding for the article, generated using the OpenAI EMBEDDING_MODEL.
36
 
37
+
38
+ ## Data Ingestion
39
+ [Create a free MongoDB Atlas Account](https://www.mongodb.com/cloud/atlas/register?utm_campaign=devrel&utm_source=community&utm_medium=organic_social&utm_content=Hugging%20Face%20Dataset&utm_term=richmond.alake) and conduct the Data Ingestion process below.
40
+
41
+ ```python
42
+ import os
43
+ from pymongo import MongoClient
44
+ import datasets
45
+ from datasets import load_dataset
46
+ from bson import json_util
47
+
48
+ # MongoDB Atlas URI and client setup
49
+ uri = os.environ.get('MONGODB_ATLAS_URI')
50
+ client = MongoClient(uri)
51
+
52
+ # Change to the appropriate database and collection names for the tech news embeddings
53
+ db_name = 'your_database_name' # Change this to your actual database name
54
+ collection_name = 'tech_news_embeddings' # Change this to your actual collection name
55
+
56
+ tech_news_embeddings_collection = client[db_name][collection_name]
57
+
58
+ # Load the "tech-news-embeddings" dataset from Hugging Face
59
+ dataset = load_dataset("AIatMongoDB/tech-news-embeddings")
60
+
61
+ insert_data = []
62
+
63
+ # Iterate through the dataset and prepare the documents for insertion
64
+ for item in dataset['train']:
65
+ # Convert the dataset item to MongoDB document format
66
+ doc_item = json_util.loads(json_util.dumps(item))
67
+ insert_data.append(doc_item)
68
+
69
+ # Insert in batches of 1000 documents
70
+ if len(insert_data) == 1000:
71
+ tech_news_embeddings_collection.insert_many(insert_data)
72
+ print("1000 records ingested")
73
+ insert_data = []
74
+
75
+ # Insert any remaining documents
76
+ if len(insert_data) > 0:
77
+ tech_news_embeddings_collection.insert_many(insert_data)
78
+ print("Data Ingested")
79
+
80
+ ```
81
+
82
  ## Usage
83
  The dataset is suited for a range of applications, including:
84