MothMalone commited on
Commit
d4c0aa0
·
verified ·
1 Parent(s): 4a51514

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +104 -385
README.md CHANGED
@@ -1,122 +1,19 @@
1
  ---
2
- configs:
3
- - config_name: MASSIVE
4
- data_files:
5
- - split: train
6
- path: MASSIVE/train-*
7
- - split: validation
8
- path: MASSIVE/validation-*
9
- - split: test
10
- path: MASSIVE/test-*
11
- - config_name: ag_news
12
- data_files:
13
- - path: ag_news/train.csv
14
- split: train
15
- - path: ag_news/validation.csv
16
- split: validation
17
- - path: ag_news/test.csv
18
- split: test
19
- - config_name: amazon_polarity
20
- data_files:
21
- - path: amazon_polarity/train.csv
22
- split: train
23
- - path: amazon_polarity/validation.csv
24
- split: validation
25
- - path: amazon_polarity/test.csv
26
- split: test
27
- - config_name: banking77
28
- data_files:
29
- - split: train
30
- path: banking77/train-*
31
- - split: test
32
- path: banking77/test-*
33
- - split: validation
34
- path: banking77/validation-*
35
- - config_name: emotion
36
- data_files:
37
- - path: emotion/train.csv
38
- split: train
39
- - path: emotion/validation.csv
40
- split: validation
41
- - path: emotion/test.csv
42
- split: test
43
- - config_name: imdb
44
- data_files:
45
- - path: imdb/train.csv
46
- split: train
47
- - path: imdb/validation.csv
48
- split: validation
49
- - path: imdb/test.csv
50
- split: test
51
- - config_name: trec
52
- data_files:
53
- - split: train
54
- path: trec/train-*
55
- - split: test
56
- path: trec/test-*
57
- - split: validation
58
- path: trec/validation-*
59
- - config_name: twenty_newsgroups
60
- data_files:
61
- - path: twenty_newsgroups/train.csv
62
- split: train
63
- - path: twenty_newsgroups/validation.csv
64
- split: validation
65
- - path: twenty_newsgroups/test.csv
66
- split: test
67
- - config_name: yelp_polarity
68
- data_files:
69
- - path: yelp_polarity/train.csv
70
- split: train
71
- - path: yelp_polarity/validation.csv
72
- split: validation
73
- - path: yelp_polarity/test.csv
74
- split: test
75
  dataset_info:
76
- - config_name: MASSIVE
77
- features:
78
- - name: text
79
- dtype: string
80
- - name: label
81
- dtype: int64
82
- splits:
83
- - name: train
84
- num_bytes: 541604
85
- num_examples: 11514
86
- - name: validation
87
- num_bytes: 95125
88
- num_examples: 2033
89
- - name: test
90
- num_bytes: 138473
91
- num_examples: 2974
92
- download_size: 379162
93
- dataset_size: 775202
94
- - config_name: ag_news
95
- features:
96
- - dtype: string
97
- name: text
98
- - dtype: int64
99
- name: label
100
- splits:
101
- - name: train
102
- num_examples: 90000
103
- - name: validation
104
- num_examples: 30000
105
- - name: test
106
- num_examples: 7600
107
- - config_name: amazon_polarity
108
- features:
109
- - dtype: string
110
- name: text
111
- - dtype: int64
112
- name: label
113
- splits:
114
- - name: train
115
- num_examples: 2700000
116
- - name: validation
117
- num_examples: 900000
118
- - name: test
119
- num_examples: 400000
120
  - config_name: banking77
121
  features:
122
  - name: text
@@ -125,42 +22,11 @@ dataset_info:
125
  dtype: int64
126
  splits:
127
  - name: train
128
- num_bytes: 535404
129
  num_examples: 7502
130
  - name: test
131
- num_bytes: 204010
132
  num_examples: 3080
133
  - name: validation
134
- num_bytes: 179624
135
  num_examples: 2501
136
- download_size: 452800
137
- dataset_size: 919038
138
- - config_name: emotion
139
- features:
140
- - dtype: string
141
- name: text
142
- - dtype: int64
143
- name: label
144
- splits:
145
- - name: train
146
- num_examples: 250085
147
- - name: validation
148
- num_examples: 83362
149
- - name: test
150
- num_examples: 41681
151
- - config_name: imdb
152
- features:
153
- - dtype: string
154
- name: text
155
- - dtype: int64
156
- name: label
157
- splits:
158
- - name: train
159
- num_examples: 18750
160
- - name: validation
161
- num_examples: 6250
162
- - name: test
163
- num_examples: 25000
164
  - config_name: trec
165
  features:
166
  - name: text
@@ -169,265 +35,118 @@ dataset_info:
169
  dtype: int64
170
  splits:
171
  - name: train
172
- num_bytes: 255609
173
  num_examples: 4089
174
  - name: test
175
- num_bytes: 23979
176
  num_examples: 500
177
  - name: validation
178
- num_bytes: 85861
179
  num_examples: 1363
180
- download_size: 219283
181
- dataset_size: 365449
182
- - config_name: twenty_newsgroups
183
  features:
184
- - dtype: string
185
- name: text
186
- - dtype: int64
187
- name: label
188
  splits:
189
  - name: train
190
- num_examples: 8485
191
- - name: validation
192
- num_examples: 2829
193
  - name: test
194
- num_examples: 7532
195
- - config_name: yelp_polarity
 
 
196
  features:
197
- - dtype: string
198
- name: text
199
- - dtype: int64
200
- name: label
201
  splits:
202
  - name: train
203
- num_examples: 420000
204
- - name: validation
205
- num_examples: 140000
206
  - name: test
207
- num_examples: 38000
208
- language:
209
- - en
210
- license: apache-2.0
211
- size_categories:
212
- - 1K<n<10K
213
- - 10K<n<100K
214
- tags:
215
- - data-preprocessing
216
- - automl
217
- - quality-issues
218
- - benchmarks
219
- task_categories:
220
- - text-classification
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
221
  ---
222
-
223
  # Data Preprocessing AutoML Benchmarks
224
 
225
  This repository contains text classification datasets with known data quality issues for preprocessing research in AutoML.
226
 
227
- ## Dataset Categories
228
-
229
- ### Redundancy Issues
230
- - **ag_news**: News categorization with topic overlap
231
- - **twenty_newsgroups**: Newsgroup posts with cross-posting
232
-
233
- ### Class Imbalance Issues
234
- - **yelp_polarity**: Sentiment analysis with rating bias
235
-
236
- ### Label Noise Issues
237
- - **imdb**: Movie reviews with subjective labels
238
- - **amazon_polarity**: Product reviews with rating inconsistencies
239
-
240
- ### Outlier Issues
241
- - **emotion**: Twitter emotion with length outliers
242
-
243
- ## Dataset Structure
244
-
245
- Each dataset contains:
246
- - `train.csv`: Training split (~75% of original training data)
247
- - `validation.csv`: Validation split (~25% of original training data)
248
- - `test.csv`: Test split (original test set preserved)
249
-
250
- All datasets have consistent columns:
251
- - `text`: Input text
252
- - `label`: Target label (integer encoded)
253
-
254
- **Important**: Original test sets are preserved to maintain methodological integrity and enable comparison with published benchmarks.
255
-
256
  ## Usage
257
 
 
 
258
  ```python
259
  from datasets import load_dataset
260
 
261
- # Load a specific dataset
262
- dataset = load_dataset("MothMalone/data-preprocessing-automl-benchmarks", "ag_news")
263
-
264
- # Access splits
265
- train_data = dataset["train"]
266
- val_data = dataset["validation"]
267
- test_data = dataset["test"]
268
  ```
269
 
270
- ## Dataset Details
271
-
272
- ag_news:
273
- class_names:
274
- - World
275
- - Sports
276
- - Business
277
- - Technology
278
- description: News categorization with 4 classes, known for similar content across
279
- categories
280
- name: AG News Classification
281
- num_classes: 4
282
- original_test_samples: 7600
283
- original_train_samples: 120000
284
- quality_issues:
285
- - redundancy
286
- - similar_content
287
- - topic_overlap
288
- target_column: label
289
- task_type: multi_classification
290
- test_samples: 7600
291
- text_columns:
292
- - text
293
- total_samples: 127600
294
- train_samples: 90000
295
- validation_samples: 30000
296
- amazon_polarity:
297
- class_names:
298
- - negative
299
- - positive
300
- description: Amazon reviews with noisy sentiment labels
301
- name: Amazon Product Reviews
302
- num_classes: 2
303
- original_test_samples: 400000
304
- original_train_samples: 3600000
305
- quality_issues:
306
- - label_noise
307
- - rating_inconsistency
308
- target_column: label
309
- task_type: binary_classification
310
- test_samples: 400000
311
- text_columns:
312
- - text
313
- total_samples: 4000000
314
- train_samples: 2700000
315
- validation_samples: 900000
316
- emotion:
317
- class_names:
318
- - sadness
319
- - joy
320
- - love
321
- - anger
322
- - fear
323
- - surprise
324
- description: Twitter emotion classification with text length outliers
325
- name: Emotion Classification
326
- num_classes: 6
327
- original_test_samples: 41681
328
- original_train_samples: 333447
329
- quality_issues:
330
- - length_outliers
331
- - text_anomalies
332
- target_column: label
333
- task_type: multi_classification
334
- test_samples: 41681
335
- text_columns:
336
- - text
337
- total_samples: 375128
338
- train_samples: 250085
339
- validation_samples: 83362
340
- imdb:
341
- class_names:
342
- - negative
343
- - positive
344
- description: Movie reviews with subjective sentiment labels and borderline cases
345
- name: IMDB Movie Reviews
346
- num_classes: 2
347
- original_test_samples: 25000
348
- original_train_samples: 25000
349
- quality_issues:
350
- - label_noise
351
- - subjective_labels
352
- - borderline_cases
353
- target_column: label
354
- task_type: binary_classification
355
- test_samples: 25000
356
- text_columns:
357
- - text
358
- total_samples: 50000
359
- train_samples: 18750
360
- validation_samples: 6250
361
- twenty_newsgroups:
362
- class_names:
363
- - alt.atheism
364
- - comp.graphics
365
- - comp.os.ms-windows.misc
366
- - comp.sys.ibm.pc.hardware
367
- - comp.sys.mac.hardware
368
- - comp.windows.x
369
- - misc.forsale
370
- - rec.autos
371
- - rec.motorcycles
372
- - rec.sport.baseball
373
- - rec.sport.hockey
374
- - sci.crypt
375
- - sci.electronics
376
- - sci.med
377
- - sci.space
378
- - soc.religion.christian
379
- - talk.politics.guns
380
- - talk.politics.mideast
381
- - talk.politics.misc
382
- - talk.religion.misc
383
- description: Newsgroup posts with overlapping topics and cross-posting
384
- name: 20 Newsgroups
385
- num_classes: 20
386
- original_test_samples: 7532
387
- original_train_samples: 11314
388
- quality_issues:
389
- - redundancy
390
- - cross_posting
391
- - similar_topics
392
- target_column: label
393
- task_type: multi_classification
394
- test_samples: 7532
395
- text_columns:
396
- - text
397
- total_samples: 18846
398
- train_samples: 8485
399
- validation_samples: 2829
400
- yelp_polarity:
401
- class_names:
402
- - negative
403
- - positive
404
- description: Yelp reviews with positive/negative sentiment, naturally imbalanced
405
- name: Yelp Review Polarity
406
- num_classes: 2
407
- original_test_samples: 38000
408
- original_train_samples: 560000
409
- quality_issues:
410
- - moderate_imbalance
411
- - rating_bias
412
- target_column: label
413
- task_type: binary_classification
414
- test_samples: 38000
415
- text_columns:
416
- - text
417
- total_samples: 598000
418
- train_samples: 420000
419
- validation_samples: 140000
420
-
421
-
422
- ## Citation
423
-
424
- If you use these datasets in your research, please cite the original sources and this collection:
425
-
426
- ```bibtex
427
- @misc{mothmalone2024preprocessing,
428
- title={Data Preprocessing AutoML Benchmarks},
429
- author={MothMalone},
430
- year={2024},
431
- url={https://huggingface.co/datasets/MothMalone/data-preprocessing-automl-benchmarks}
432
- }
433
- ```
 
1
  ---
2
+ license: apache-2.0
3
+ task_categories:
4
+ - text-classification
5
+ language:
6
+ - en
7
+ tags:
8
+ - data-preprocessing
9
+ - automl
10
+ - benchmarks
11
+ size_categories:
12
+ - n<1K
13
+ - 1K<n<10K
14
+ - 10K<n<100K
15
+ - 100K<n<1M
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  dataset_info:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  - config_name: banking77
18
  features:
19
  - name: text
 
22
  dtype: int64
23
  splits:
24
  - name: train
 
25
  num_examples: 7502
26
  - name: test
 
27
  num_examples: 3080
28
  - name: validation
 
29
  num_examples: 2501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  - config_name: trec
31
  features:
32
  - name: text
 
35
  dtype: int64
36
  splits:
37
  - name: train
 
38
  num_examples: 4089
39
  - name: test
 
40
  num_examples: 500
41
  - name: validation
 
42
  num_examples: 1363
43
+ - config_name: financial_phrasebank
 
 
44
  features:
45
+ - name: text
46
+ dtype: string
47
+ - name: label
48
+ dtype: int64
49
  splits:
50
  - name: train
51
+ num_examples: 1698
 
 
52
  - name: test
53
+ num_examples: 0
54
+ - name: validation
55
+ num_examples: 566
56
+ - config_name: MASSIVE
57
  features:
58
+ - name: text
59
+ dtype: string
60
+ - name: label
61
+ dtype: int64
62
  splits:
63
  - name: train
64
+ num_examples: 11514
 
 
65
  - name: test
66
+ num_examples: 2974
67
+ - name: validation
68
+ num_examples: 2033
69
+ configs:
70
+ - config_name: banking77
71
+ data_files:
72
+ - split: train
73
+ path: data/banking77-train.parquet
74
+ - split: test
75
+ path: data/banking77-test.parquet
76
+ - split: validation
77
+ path: data/banking77-validation.parquet
78
+ - config_name: trec
79
+ data_files:
80
+ - split: train
81
+ path: data/trec-train.parquet
82
+ - split: test
83
+ path: data/trec-test.parquet
84
+ - split: validation
85
+ path: data/trec-validation.parquet
86
+ - config_name: financial_phrasebank
87
+ data_files:
88
+ - split: train
89
+ path: data/financial_phrasebank-train.parquet
90
+ - split: test
91
+ path: data/financial_phrasebank-test.parquet
92
+ - split: validation
93
+ path: data/financial_phrasebank-validation.parquet
94
+ - config_name: MASSIVE
95
+ data_files:
96
+ - split: train
97
+ path: data/MASSIVE-train.parquet
98
+ - split: test
99
+ path: data/MASSIVE-test.parquet
100
+ - split: validation
101
+ path: data/MASSIVE-validation.parquet
102
  ---
 
103
  # Data Preprocessing AutoML Benchmarks
104
 
105
  This repository contains text classification datasets with known data quality issues for preprocessing research in AutoML.
106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
107
  ## Usage
108
 
109
+ Load a specific dataset configuration like this:
110
+
111
  ```python
112
  from datasets import load_dataset
113
 
114
+ # Example for loading the TREC dataset
115
+ dataset = load_dataset("MothMalone/data-preprocessing-automl-benchmarks", "trec")
 
 
 
 
 
116
  ```
117
 
118
+ ## Available Datasets
119
+
120
+ Below are the details for each dataset configuration available in this repository.
121
+
122
+ ### banking77
123
+ - Description:
124
+ - Data Quality Issue: N/A
125
+ - Classes: 77
126
+ - Training Samples: 7502
127
+ - Validation Samples: 2501
128
+ - Test Samples: 3080
129
+
130
+ ### trec
131
+ - Description: The Text REtrieval Conference (TREC) Question Classification dataset contains 5500 labeled questions in training set and another 500 for test set.
132
+ - Data Quality Issue: N/A
133
+ - Classes: 6
134
+ - Training Samples: 4089
135
+ - Validation Samples: 1363
136
+ - Test Samples: 500
137
+
138
+ ### financial_phrasebank
139
+ - Description: The key arguments for the low utilization of statistical techniques in
140
+ - Data Quality Issue: N/A
141
+ - Classes: 3
142
+ - Training Samples: 1698
143
+ - Validation Samples: 566
144
+ - Test Samples: 0
145
+
146
+ ### MASSIVE
147
+ - Description:
148
+ - Data Quality Issue: N/A
149
+ - Classes: 60
150
+ - Training Samples: 11514
151
+ - Validation Samples: 2033
152
+ - Test Samples: 2974