MothMalone commited on
Commit
dae248a
·
verified ·
1 Parent(s): 57a3a16

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +232 -3
README.md CHANGED
@@ -1,3 +1,232 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ task_categories:
4
+ - text-classification
5
+ language:
6
+ - en
7
+ tags:
8
+ - data-preprocessing
9
+ - automl
10
+ - quality-issues
11
+ - benchmarks
12
+ size_categories:
13
+ - 1K<n<10K
14
+ - 10K<n<100K
15
+ ---
16
+
17
+ # Data Preprocessing AutoML Benchmarks
18
+
19
+ This repository contains text classification datasets with known data quality issues for preprocessing research in AutoML.
20
+
21
+ ## Dataset Categories
22
+
23
+ ### Redundancy Issues
24
+ - **ag_news**: News categorization with topic overlap
25
+ - **twenty_newsgroups**: Newsgroup posts with cross-posting
26
+
27
+ ### Class Imbalance Issues
28
+ - **yelp_polarity**: Sentiment analysis with rating bias
29
+ - **sms_spam**: Spam detection with severe imbalance
30
+
31
+ ### Label Noise Issues
32
+ - **imdb**: Movie reviews with subjective labels
33
+ - **amazon_polarity**: Product reviews with rating inconsistencies
34
+
35
+ ### Outlier Issues
36
+ - **emotion**: Twitter emotion with length outliers
37
+ - **financial_phrasebank**: Financial sentiment with domain outliers
38
+
39
+ ### Clean Baselines
40
+ - **trec**: Question classification with clean labels
41
+
42
+ ## Dataset Structure
43
+
44
+ Each dataset contains:
45
+ - `train.csv`: Training split (~75% of original training data)
46
+ - `validation.csv`: Validation split (~25% of original training data)
47
+ - `test.csv`: Test split (original test set preserved)
48
+
49
+ All datasets have consistent columns:
50
+ - `text`: Input text
51
+ - `label`: Target label (integer encoded)
52
+
53
+ **Important**: Original test sets are preserved to maintain methodological integrity and enable comparison with published benchmarks.
54
+
55
+ ## Usage
56
+
57
+ ```python
58
+ from datasets import load_dataset
59
+
60
+ # Load a specific dataset
61
+ dataset = load_dataset("MothMalone/data-preprocessing-automl-benchmarks", "ag_news")
62
+
63
+ # Access splits
64
+ train_data = dataset["train"]
65
+ val_data = dataset["validation"]
66
+ test_data = dataset["test"]
67
+ ```
68
+
69
+ ## Metadata
70
+
71
+ ag_news:
72
+ class_names:
73
+ - World
74
+ - Sports
75
+ - Business
76
+ - Technology
77
+ description: News categorization with 4 classes, known for similar content across
78
+ categories
79
+ name: AG News Classification
80
+ num_classes: 4
81
+ original_test_samples: 7600
82
+ original_train_samples: 120000
83
+ quality_issues:
84
+ - redundancy
85
+ - similar_content
86
+ - topic_overlap
87
+ target_column: label
88
+ task_type: multi_classification
89
+ test_samples: 7600
90
+ text_columns:
91
+ - text
92
+ total_samples: 127600
93
+ train_samples: 90000
94
+ validation_samples: 30000
95
+ amazon_polarity:
96
+ class_names:
97
+ - negative
98
+ - positive
99
+ description: Amazon reviews with noisy sentiment labels
100
+ name: Amazon Product Reviews
101
+ num_classes: 2
102
+ original_test_samples: 400000
103
+ original_train_samples: 3600000
104
+ quality_issues:
105
+ - label_noise
106
+ - rating_inconsistency
107
+ target_column: label
108
+ task_type: binary_classification
109
+ test_samples: 400000
110
+ text_columns:
111
+ - text
112
+ total_samples: 4000000
113
+ train_samples: 2700000
114
+ validation_samples: 900000
115
+ emotion:
116
+ class_names:
117
+ - sadness
118
+ - joy
119
+ - love
120
+ - anger
121
+ - fear
122
+ - surprise
123
+ description: Twitter emotion classification with text length outliers
124
+ name: Emotion Classification
125
+ num_classes: 6
126
+ original_test_samples: 41681
127
+ original_train_samples: 333447
128
+ quality_issues:
129
+ - length_outliers
130
+ - text_anomalies
131
+ target_column: label
132
+ task_type: multi_classification
133
+ test_samples: 41681
134
+ text_columns:
135
+ - text
136
+ total_samples: 375128
137
+ train_samples: 250085
138
+ validation_samples: 83362
139
+ imdb:
140
+ class_names:
141
+ - negative
142
+ - positive
143
+ description: Movie reviews with subjective sentiment labels and borderline cases
144
+ name: IMDB Movie Reviews
145
+ num_classes: 2
146
+ original_test_samples: 25000
147
+ original_train_samples: 25000
148
+ quality_issues:
149
+ - label_noise
150
+ - subjective_labels
151
+ - borderline_cases
152
+ target_column: label
153
+ task_type: binary_classification
154
+ test_samples: 25000
155
+ text_columns:
156
+ - text
157
+ total_samples: 50000
158
+ train_samples: 18750
159
+ validation_samples: 6250
160
+ twenty_newsgroups:
161
+ class_names:
162
+ - alt.atheism
163
+ - comp.graphics
164
+ - comp.os.ms-windows.misc
165
+ - comp.sys.ibm.pc.hardware
166
+ - comp.sys.mac.hardware
167
+ - comp.windows.x
168
+ - misc.forsale
169
+ - rec.autos
170
+ - rec.motorcycles
171
+ - rec.sport.baseball
172
+ - rec.sport.hockey
173
+ - sci.crypt
174
+ - sci.electronics
175
+ - sci.med
176
+ - sci.space
177
+ - soc.religion.christian
178
+ - talk.politics.guns
179
+ - talk.politics.mideast
180
+ - talk.politics.misc
181
+ - talk.religion.misc
182
+ description: Newsgroup posts with overlapping topics and cross-posting
183
+ name: 20 Newsgroups
184
+ num_classes: 20
185
+ original_test_samples: 7532
186
+ original_train_samples: 11314
187
+ quality_issues:
188
+ - redundancy
189
+ - cross_posting
190
+ - similar_topics
191
+ target_column: label
192
+ task_type: multi_classification
193
+ test_samples: 7532
194
+ text_columns:
195
+ - text
196
+ total_samples: 18846
197
+ train_samples: 8485
198
+ validation_samples: 2829
199
+ yelp_polarity:
200
+ class_names:
201
+ - negative
202
+ - positive
203
+ description: Yelp reviews with positive/negative sentiment, naturally imbalanced
204
+ name: Yelp Review Polarity
205
+ num_classes: 2
206
+ original_test_samples: 38000
207
+ original_train_samples: 560000
208
+ quality_issues:
209
+ - moderate_imbalance
210
+ - rating_bias
211
+ target_column: label
212
+ task_type: binary_classification
213
+ test_samples: 38000
214
+ text_columns:
215
+ - text
216
+ total_samples: 598000
217
+ train_samples: 420000
218
+ validation_samples: 140000
219
+
220
+
221
+ ## Citation
222
+
223
+ If you use these datasets in your research, please cite the original sources and this collection:
224
+
225
+ ```bibtex
226
+ @misc{mothmalone2024preprocessing,
227
+ title={Data Preprocessing AutoML Benchmarks},
228
+ author={MothMalone},
229
+ year={2024},
230
+ url={https://huggingface.co/datasets/MothMalone/data-preprocessing-automl-benchmarks}
231
+ }
232
+ ```