Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,17 +1,145 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
language:
|
6 |
- en
|
|
|
|
|
|
|
|
|
7 |
tags:
|
8 |
- data-preprocessing
|
9 |
- automl
|
10 |
- quality-issues
|
11 |
- benchmarks
|
12 |
-
|
13 |
-
-
|
14 |
-
- 10K<n<100K
|
15 |
---
|
16 |
|
17 |
# Data Preprocessing AutoML Benchmarks
|
@@ -24,9 +152,8 @@ This repository contains text classification datasets with known data quality is
|
|
24 |
- **ag_news**: News categorization with topic overlap
|
25 |
- **twenty_newsgroups**: Newsgroup posts with cross-posting
|
26 |
|
27 |
-
### Class Imbalance Issues
|
28 |
- **yelp_polarity**: Sentiment analysis with rating bias
|
29 |
-
- **sms_spam**: Spam detection with severe imbalance
|
30 |
|
31 |
### Label Noise Issues
|
32 |
- **imdb**: Movie reviews with subjective labels
|
@@ -34,10 +161,6 @@ This repository contains text classification datasets with known data quality is
|
|
34 |
|
35 |
### Outlier Issues
|
36 |
- **emotion**: Twitter emotion with length outliers
|
37 |
-
- **financial_phrasebank**: Financial sentiment with domain outliers
|
38 |
-
|
39 |
-
### Clean Baselines
|
40 |
-
- **trec**: Question classification with clean labels
|
41 |
|
42 |
## Dataset Structure
|
43 |
|
@@ -62,11 +185,11 @@ dataset = load_dataset("MothMalone/data-preprocessing-automl-benchmarks", "ag_ne
|
|
62 |
|
63 |
# Access splits
|
64 |
train_data = dataset["train"]
|
65 |
-
val_data = dataset["validation"]
|
66 |
test_data = dataset["test"]
|
67 |
```
|
68 |
|
69 |
-
##
|
70 |
|
71 |
ag_news:
|
72 |
class_names:
|
|
|
1 |
---
|
2 |
+
configs:
|
3 |
+
- config_name: ag_news
|
4 |
+
data_files:
|
5 |
+
- path: ag_news/train.csv
|
6 |
+
split: train
|
7 |
+
- path: ag_news/validation.csv
|
8 |
+
split: validation
|
9 |
+
- path: ag_news/test.csv
|
10 |
+
split: test
|
11 |
+
- config_name: amazon_polarity
|
12 |
+
data_files:
|
13 |
+
- path: amazon_polarity/train.csv
|
14 |
+
split: train
|
15 |
+
- path: amazon_polarity/validation.csv
|
16 |
+
split: validation
|
17 |
+
- path: amazon_polarity/test.csv
|
18 |
+
split: test
|
19 |
+
- config_name: emotion
|
20 |
+
data_files:
|
21 |
+
- path: emotion/train.csv
|
22 |
+
split: train
|
23 |
+
- path: emotion/validation.csv
|
24 |
+
split: validation
|
25 |
+
- path: emotion/test.csv
|
26 |
+
split: test
|
27 |
+
- config_name: imdb
|
28 |
+
data_files:
|
29 |
+
- path: imdb/train.csv
|
30 |
+
split: train
|
31 |
+
- path: imdb/validation.csv
|
32 |
+
split: validation
|
33 |
+
- path: imdb/test.csv
|
34 |
+
split: test
|
35 |
+
- config_name: twenty_newsgroups
|
36 |
+
data_files:
|
37 |
+
- path: twenty_newsgroups/train.csv
|
38 |
+
split: train
|
39 |
+
- path: twenty_newsgroups/validation.csv
|
40 |
+
split: validation
|
41 |
+
- path: twenty_newsgroups/test.csv
|
42 |
+
split: test
|
43 |
+
- config_name: yelp_polarity
|
44 |
+
data_files:
|
45 |
+
- path: yelp_polarity/train.csv
|
46 |
+
split: train
|
47 |
+
- path: yelp_polarity/validation.csv
|
48 |
+
split: validation
|
49 |
+
- path: yelp_polarity/test.csv
|
50 |
+
split: test
|
51 |
+
dataset_info:
|
52 |
+
- config_name: ag_news
|
53 |
+
features:
|
54 |
+
- dtype: string
|
55 |
+
name: text
|
56 |
+
- dtype: int64
|
57 |
+
name: label
|
58 |
+
splits:
|
59 |
+
- name: train
|
60 |
+
num_examples: 90000
|
61 |
+
- name: validation
|
62 |
+
num_examples: 30000
|
63 |
+
- name: test
|
64 |
+
num_examples: 7600
|
65 |
+
- config_name: amazon_polarity
|
66 |
+
features:
|
67 |
+
- dtype: string
|
68 |
+
name: text
|
69 |
+
- dtype: int64
|
70 |
+
name: label
|
71 |
+
splits:
|
72 |
+
- name: train
|
73 |
+
num_examples: 2700000
|
74 |
+
- name: validation
|
75 |
+
num_examples: 900000
|
76 |
+
- name: test
|
77 |
+
num_examples: 400000
|
78 |
+
- config_name: emotion
|
79 |
+
features:
|
80 |
+
- dtype: string
|
81 |
+
name: text
|
82 |
+
- dtype: int64
|
83 |
+
name: label
|
84 |
+
splits:
|
85 |
+
- name: train
|
86 |
+
num_examples: 250085
|
87 |
+
- name: validation
|
88 |
+
num_examples: 83362
|
89 |
+
- name: test
|
90 |
+
num_examples: 41681
|
91 |
+
- config_name: imdb
|
92 |
+
features:
|
93 |
+
- dtype: string
|
94 |
+
name: text
|
95 |
+
- dtype: int64
|
96 |
+
name: label
|
97 |
+
splits:
|
98 |
+
- name: train
|
99 |
+
num_examples: 18750
|
100 |
+
- name: validation
|
101 |
+
num_examples: 6250
|
102 |
+
- name: test
|
103 |
+
num_examples: 25000
|
104 |
+
- config_name: twenty_newsgroups
|
105 |
+
features:
|
106 |
+
- dtype: string
|
107 |
+
name: text
|
108 |
+
- dtype: int64
|
109 |
+
name: label
|
110 |
+
splits:
|
111 |
+
- name: train
|
112 |
+
num_examples: 8485
|
113 |
+
- name: validation
|
114 |
+
num_examples: 2829
|
115 |
+
- name: test
|
116 |
+
num_examples: 7532
|
117 |
+
- config_name: yelp_polarity
|
118 |
+
features:
|
119 |
+
- dtype: string
|
120 |
+
name: text
|
121 |
+
- dtype: int64
|
122 |
+
name: label
|
123 |
+
splits:
|
124 |
+
- name: train
|
125 |
+
num_examples: 420000
|
126 |
+
- name: validation
|
127 |
+
num_examples: 140000
|
128 |
+
- name: test
|
129 |
+
num_examples: 38000
|
130 |
language:
|
131 |
- en
|
132 |
+
license: apache-2.0
|
133 |
+
size_categories:
|
134 |
+
- 1K<n<10K
|
135 |
+
- 10K<n<100K
|
136 |
tags:
|
137 |
- data-preprocessing
|
138 |
- automl
|
139 |
- quality-issues
|
140 |
- benchmarks
|
141 |
+
task_categories:
|
142 |
+
- text-classification
|
|
|
143 |
---
|
144 |
|
145 |
# Data Preprocessing AutoML Benchmarks
|
|
|
152 |
- **ag_news**: News categorization with topic overlap
|
153 |
- **twenty_newsgroups**: Newsgroup posts with cross-posting
|
154 |
|
155 |
+
### Class Imbalance Issues
|
156 |
- **yelp_polarity**: Sentiment analysis with rating bias
|
|
|
157 |
|
158 |
### Label Noise Issues
|
159 |
- **imdb**: Movie reviews with subjective labels
|
|
|
161 |
|
162 |
### Outlier Issues
|
163 |
- **emotion**: Twitter emotion with length outliers
|
|
|
|
|
|
|
|
|
164 |
|
165 |
## Dataset Structure
|
166 |
|
|
|
185 |
|
186 |
# Access splits
|
187 |
train_data = dataset["train"]
|
188 |
+
val_data = dataset["validation"]
|
189 |
test_data = dataset["test"]
|
190 |
```
|
191 |
|
192 |
+
## Dataset Details
|
193 |
|
194 |
ag_news:
|
195 |
class_names:
|