MothMalone commited on
Commit
fbd9edf
·
verified ·
1 Parent(s): b697291

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +137 -14
README.md CHANGED
@@ -1,17 +1,145 @@
1
  ---
2
- license: apache-2.0
3
- task_categories:
4
- - text-classification
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  language:
6
  - en
 
 
 
 
7
  tags:
8
  - data-preprocessing
9
  - automl
10
  - quality-issues
11
  - benchmarks
12
- size_categories:
13
- - 1K<n<10K
14
- - 10K<n<100K
15
  ---
16
 
17
  # Data Preprocessing AutoML Benchmarks
@@ -24,9 +152,8 @@ This repository contains text classification datasets with known data quality is
24
  - **ag_news**: News categorization with topic overlap
25
  - **twenty_newsgroups**: Newsgroup posts with cross-posting
26
 
27
- ### Class Imbalance Issues
28
  - **yelp_polarity**: Sentiment analysis with rating bias
29
- - **sms_spam**: Spam detection with severe imbalance
30
 
31
  ### Label Noise Issues
32
  - **imdb**: Movie reviews with subjective labels
@@ -34,10 +161,6 @@ This repository contains text classification datasets with known data quality is
34
 
35
  ### Outlier Issues
36
  - **emotion**: Twitter emotion with length outliers
37
- - **financial_phrasebank**: Financial sentiment with domain outliers
38
-
39
- ### Clean Baselines
40
- - **trec**: Question classification with clean labels
41
 
42
  ## Dataset Structure
43
 
@@ -62,11 +185,11 @@ dataset = load_dataset("MothMalone/data-preprocessing-automl-benchmarks", "ag_ne
62
 
63
  # Access splits
64
  train_data = dataset["train"]
65
- val_data = dataset["validation"]
66
  test_data = dataset["test"]
67
  ```
68
 
69
- ## Metadata
70
 
71
  ag_news:
72
  class_names:
 
1
  ---
2
+ configs:
3
+ - config_name: ag_news
4
+ data_files:
5
+ - path: ag_news/train.csv
6
+ split: train
7
+ - path: ag_news/validation.csv
8
+ split: validation
9
+ - path: ag_news/test.csv
10
+ split: test
11
+ - config_name: amazon_polarity
12
+ data_files:
13
+ - path: amazon_polarity/train.csv
14
+ split: train
15
+ - path: amazon_polarity/validation.csv
16
+ split: validation
17
+ - path: amazon_polarity/test.csv
18
+ split: test
19
+ - config_name: emotion
20
+ data_files:
21
+ - path: emotion/train.csv
22
+ split: train
23
+ - path: emotion/validation.csv
24
+ split: validation
25
+ - path: emotion/test.csv
26
+ split: test
27
+ - config_name: imdb
28
+ data_files:
29
+ - path: imdb/train.csv
30
+ split: train
31
+ - path: imdb/validation.csv
32
+ split: validation
33
+ - path: imdb/test.csv
34
+ split: test
35
+ - config_name: twenty_newsgroups
36
+ data_files:
37
+ - path: twenty_newsgroups/train.csv
38
+ split: train
39
+ - path: twenty_newsgroups/validation.csv
40
+ split: validation
41
+ - path: twenty_newsgroups/test.csv
42
+ split: test
43
+ - config_name: yelp_polarity
44
+ data_files:
45
+ - path: yelp_polarity/train.csv
46
+ split: train
47
+ - path: yelp_polarity/validation.csv
48
+ split: validation
49
+ - path: yelp_polarity/test.csv
50
+ split: test
51
+ dataset_info:
52
+ - config_name: ag_news
53
+ features:
54
+ - dtype: string
55
+ name: text
56
+ - dtype: int64
57
+ name: label
58
+ splits:
59
+ - name: train
60
+ num_examples: 90000
61
+ - name: validation
62
+ num_examples: 30000
63
+ - name: test
64
+ num_examples: 7600
65
+ - config_name: amazon_polarity
66
+ features:
67
+ - dtype: string
68
+ name: text
69
+ - dtype: int64
70
+ name: label
71
+ splits:
72
+ - name: train
73
+ num_examples: 2700000
74
+ - name: validation
75
+ num_examples: 900000
76
+ - name: test
77
+ num_examples: 400000
78
+ - config_name: emotion
79
+ features:
80
+ - dtype: string
81
+ name: text
82
+ - dtype: int64
83
+ name: label
84
+ splits:
85
+ - name: train
86
+ num_examples: 250085
87
+ - name: validation
88
+ num_examples: 83362
89
+ - name: test
90
+ num_examples: 41681
91
+ - config_name: imdb
92
+ features:
93
+ - dtype: string
94
+ name: text
95
+ - dtype: int64
96
+ name: label
97
+ splits:
98
+ - name: train
99
+ num_examples: 18750
100
+ - name: validation
101
+ num_examples: 6250
102
+ - name: test
103
+ num_examples: 25000
104
+ - config_name: twenty_newsgroups
105
+ features:
106
+ - dtype: string
107
+ name: text
108
+ - dtype: int64
109
+ name: label
110
+ splits:
111
+ - name: train
112
+ num_examples: 8485
113
+ - name: validation
114
+ num_examples: 2829
115
+ - name: test
116
+ num_examples: 7532
117
+ - config_name: yelp_polarity
118
+ features:
119
+ - dtype: string
120
+ name: text
121
+ - dtype: int64
122
+ name: label
123
+ splits:
124
+ - name: train
125
+ num_examples: 420000
126
+ - name: validation
127
+ num_examples: 140000
128
+ - name: test
129
+ num_examples: 38000
130
  language:
131
  - en
132
+ license: apache-2.0
133
+ size_categories:
134
+ - 1K<n<10K
135
+ - 10K<n<100K
136
  tags:
137
  - data-preprocessing
138
  - automl
139
  - quality-issues
140
  - benchmarks
141
+ task_categories:
142
+ - text-classification
 
143
  ---
144
 
145
  # Data Preprocessing AutoML Benchmarks
 
152
  - **ag_news**: News categorization with topic overlap
153
  - **twenty_newsgroups**: Newsgroup posts with cross-posting
154
 
155
+ ### Class Imbalance Issues
156
  - **yelp_polarity**: Sentiment analysis with rating bias
 
157
 
158
  ### Label Noise Issues
159
  - **imdb**: Movie reviews with subjective labels
 
161
 
162
  ### Outlier Issues
163
  - **emotion**: Twitter emotion with length outliers
 
 
 
 
164
 
165
  ## Dataset Structure
166
 
 
185
 
186
  # Access splits
187
  train_data = dataset["train"]
188
+ val_data = dataset["validation"]
189
  test_data = dataset["test"]
190
  ```
191
 
192
+ ## Dataset Details
193
 
194
  ag_news:
195
  class_names: