Muennighoff commited on
Commit
0f6d058
·
1 Parent(s): 511c4b4

Add missing

Browse files
.gitattributes CHANGED
@@ -531,3 +531,7 @@ javascript/tasky_commits_javascript_559453_592362.jsonl filter=lfs diff=lfs merg
531
  python/tasky_commits_python_427817_460726.jsonl filter=lfs diff=lfs merge=lfs -text
532
  python/tasky_commits_python_4311079_4343988.jsonl filter=lfs diff=lfs merge=lfs -text
533
  python/tasky_commits_python_5397076_5429985.jsonl filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
531
  python/tasky_commits_python_427817_460726.jsonl filter=lfs diff=lfs merge=lfs -text
532
  python/tasky_commits_python_4311079_4343988.jsonl filter=lfs diff=lfs merge=lfs -text
533
  python/tasky_commits_python_5397076_5429985.jsonl filter=lfs diff=lfs merge=lfs -text
534
+ javascript_add/tasky_commits_javascript_65818_98727.jsonl filter=lfs diff=lfs merge=lfs -text
535
+ javascript_add/tasky_commits_javascript_0_32909.jsonl filter=lfs diff=lfs merge=lfs -text
536
+ javascript_add/tasky_commits_javascript_329090_361999.jsonl filter=lfs diff=lfs merge=lfs -text
537
+ javascript_add/tasky_commits_javascript_460726_493635.jsonl filter=lfs diff=lfs merge=lfs -text
inference_java.py CHANGED
@@ -28,7 +28,7 @@ def parse_args():
28
  required=True,
29
  help="Ending file number to download. Valid values: 0 - 1023",
30
  )
31
- parser.add_argument("--batch_size", type=int, default=32, help="Batch size")
32
  parser.add_argument(
33
  "--model_name",
34
  type=str,
@@ -103,16 +103,22 @@ if __name__ == "__main__":
103
  print("Exists:", tasky_commits_path)
104
  exit()
105
 
 
 
 
 
 
 
106
  tokenizer = AutoTokenizer.from_pretrained(args.model_name)
107
  model = AutoModelForSequenceClassification.from_pretrained(args.model_name)
108
  device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
109
  model.to(device)
110
  model.eval()
111
 
112
- path = "java_add_messages.jsonl"
113
- ds = datasets.load_dataset("json", data_files=[path], ignore_verifications=True)["train"]
114
- ds = ds[range(args.start, min(args.end, len(ds)))]
115
- df = pd.DataFrame(ds, index=None)
116
  #tasky_commits_path = f"tasky_commits_javascript_{args.start}_{args.end}.jsonl"
117
  #if os.path.exists(f"javascript/{tasky_commits_path}"):
118
  # print("Exists:", tasky_commits_path)
@@ -127,7 +133,7 @@ if __name__ == "__main__":
127
  # Write two jsonl files:
128
  # 1) Probas for all of C4
129
  # 2) Probas + texts for samples predicted as tasky
130
- tasky_commits_path = f"tasky_commits_java_{args.start}_{args.end}.jsonl"
131
 
132
  with open(tasky_commits_path, "w") as f:
133
  for i in range(len(preds)):
 
28
  required=True,
29
  help="Ending file number to download. Valid values: 0 - 1023",
30
  )
31
+ parser.add_argument("--batch_size", type=int, default=8, help="Batch size")
32
  parser.add_argument(
33
  "--model_name",
34
  type=str,
 
103
  print("Exists:", tasky_commits_path)
104
  exit()
105
 
106
+ path = "java_add_messages.jsonl"
107
+ ds = datasets.load_dataset("json", data_files=[path], ignore_verifications=True)["train"]
108
+ if args.start > len(ds): exit()
109
+ ds = ds[range(args.start, min(args.end, len(ds)))]
110
+ df = pd.DataFrame(ds, index=None)
111
+
112
  tokenizer = AutoTokenizer.from_pretrained(args.model_name)
113
  model = AutoModelForSequenceClassification.from_pretrained(args.model_name)
114
  device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
115
  model.to(device)
116
  model.eval()
117
 
118
+ #path = "java_add_messages.jsonl"
119
+ #ds = datasets.load_dataset("json", data_files=[path], ignore_verifications=True)["train"]
120
+ #ds = ds[range(args.start, min(args.end, len(ds)))]
121
+ #df = pd.DataFrame(ds, index=None)
122
  #tasky_commits_path = f"tasky_commits_javascript_{args.start}_{args.end}.jsonl"
123
  #if os.path.exists(f"javascript/{tasky_commits_path}"):
124
  # print("Exists:", tasky_commits_path)
 
133
  # Write two jsonl files:
134
  # 1) Probas for all of C4
135
  # 2) Probas + texts for samples predicted as tasky
136
+ tasky_commits_path = f"java_add/tasky_commits_java_{args.start}_{args.end}.jsonl"
137
 
138
  with open(tasky_commits_path, "w") as f:
139
  for i in range(len(preds)):
inference_javascript.py CHANGED
@@ -28,7 +28,7 @@ def parse_args():
28
  required=True,
29
  help="Ending file number to download. Valid values: 0 - 1023",
30
  )
31
- parser.add_argument("--batch_size", type=int, default=32, help="Batch size")
32
  parser.add_argument(
33
  "--model_name",
34
  type=str,
@@ -103,16 +103,22 @@ if __name__ == "__main__":
103
  print("Exists:", tasky_commits_path)
104
  exit()
105
 
 
 
 
 
 
 
106
  tokenizer = AutoTokenizer.from_pretrained(args.model_name)
107
  model = AutoModelForSequenceClassification.from_pretrained(args.model_name)
108
  device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
109
  model.to(device)
110
  model.eval()
111
 
112
- path = "javascript_add_messages.jsonl"
113
- ds = datasets.load_dataset("json", data_files=[path], ignore_verifications=True)["train"]
114
- ds = ds[range(args.start, min(args.end, len(ds)))]
115
- df = pd.DataFrame(ds, index=None)
116
  #tasky_commits_path = f"tasky_commits_javascript_{args.start}_{args.end}.jsonl"
117
  #if os.path.exists(f"javascript/{tasky_commits_path}"):
118
  # print("Exists:", tasky_commits_path)
@@ -127,7 +133,7 @@ if __name__ == "__main__":
127
  # Write two jsonl files:
128
  # 1) Probas for all of C4
129
  # 2) Probas + texts for samples predicted as tasky
130
- tasky_commits_path = f"tasky_commits_javascript_{args.start}_{args.end}.jsonl"
131
 
132
  with open(tasky_commits_path, "w") as f:
133
  for i in range(len(preds)):
 
28
  required=True,
29
  help="Ending file number to download. Valid values: 0 - 1023",
30
  )
31
+ parser.add_argument("--batch_size", type=int, default=8, help="Batch size")
32
  parser.add_argument(
33
  "--model_name",
34
  type=str,
 
103
  print("Exists:", tasky_commits_path)
104
  exit()
105
 
106
+ path = "javascript_add_messages.jsonl"
107
+ ds = datasets.load_dataset("json", data_files=[path], ignore_verifications=True)["train"]
108
+ if args.start > len(ds): exit()
109
+ ds = ds[range(args.start, min(args.end, len(ds)))]
110
+ df = pd.DataFrame(ds, index=None)
111
+
112
  tokenizer = AutoTokenizer.from_pretrained(args.model_name)
113
  model = AutoModelForSequenceClassification.from_pretrained(args.model_name)
114
  device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
115
  model.to(device)
116
  model.eval()
117
 
118
+ #path = "javascript_add_messages.jsonl"
119
+ #ds = datasets.load_dataset("json", data_files=[path], ignore_verifications=True)["train"]
120
+ #ds = ds[range(args.start, min(args.end, len(ds)))]
121
+ #df = pd.DataFrame(ds, index=None)
122
  #tasky_commits_path = f"tasky_commits_javascript_{args.start}_{args.end}.jsonl"
123
  #if os.path.exists(f"javascript/{tasky_commits_path}"):
124
  # print("Exists:", tasky_commits_path)
 
133
  # Write two jsonl files:
134
  # 1) Probas for all of C4
135
  # 2) Probas + texts for samples predicted as tasky
136
+ tasky_commits_path = f"javascript_add/tasky_commits_javascript_{args.start}_{args.end}.jsonl"
137
 
138
  with open(tasky_commits_path, "w") as f:
139
  for i in range(len(preds)):
inference_python.py CHANGED
@@ -28,7 +28,7 @@ def parse_args():
28
  required=True,
29
  help="Ending file number to download. Valid values: 0 - 1023",
30
  )
31
- parser.add_argument("--batch_size", type=int, default=32, help="Batch size")
32
  parser.add_argument(
33
  "--model_name",
34
  type=str,
@@ -103,16 +103,22 @@ if __name__ == "__main__":
103
  print("Exists:", tasky_commits_path)
104
  exit()
105
 
 
 
 
 
 
 
106
  tokenizer = AutoTokenizer.from_pretrained(args.model_name)
107
  model = AutoModelForSequenceClassification.from_pretrained(args.model_name)
108
  device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
109
  model.to(device)
110
  model.eval()
111
 
112
- path = "python_add_messages.jsonl"
113
- ds = datasets.load_dataset("json", data_files=[path], ignore_verifications=True)["train"]
114
- ds = ds[range(args.start, min(args.end, len(ds)))]
115
- df = pd.DataFrame(ds, index=None)
116
 
117
  texts = df["message"].to_list()
118
  commits = df["commit"].to_list()
@@ -123,7 +129,7 @@ if __name__ == "__main__":
123
  # Write two jsonl files:
124
  # 1) Probas for all of C4
125
  # 2) Probas + texts for samples predicted as tasky
126
- tasky_commits_path = f"tasky_commits_python_{args.start}_{args.end}.jsonl"
127
 
128
  with open(tasky_commits_path, "w") as f:
129
  for i in range(len(preds)):
 
28
  required=True,
29
  help="Ending file number to download. Valid values: 0 - 1023",
30
  )
31
+ parser.add_argument("--batch_size", type=int, default=8, help="Batch size")
32
  parser.add_argument(
33
  "--model_name",
34
  type=str,
 
103
  print("Exists:", tasky_commits_path)
104
  exit()
105
 
106
+ path = "python_add_messages.jsonl"
107
+ ds = datasets.load_dataset("json", data_files=[path], ignore_verifications=True)["train"]
108
+ if args.start > len(ds): exit()
109
+ ds = ds[range(args.start, min(args.end, len(ds)))]
110
+ df = pd.DataFrame(ds, index=None)
111
+
112
  tokenizer = AutoTokenizer.from_pretrained(args.model_name)
113
  model = AutoModelForSequenceClassification.from_pretrained(args.model_name)
114
  device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
115
  model.to(device)
116
  model.eval()
117
 
118
+ #path = "python_add_messages.jsonl"
119
+ #ds = datasets.load_dataset("json", data_files=[path], ignore_verifications=True)["train"]
120
+ #ds = ds[range(args.start, min(args.end, len(ds)))]
121
+ #df = pd.DataFrame(ds, index=None)
122
 
123
  texts = df["message"].to_list()
124
  commits = df["commit"].to_list()
 
129
  # Write two jsonl files:
130
  # 1) Probas for all of C4
131
  # 2) Probas + texts for samples predicted as tasky
132
+ tasky_commits_path = f"python_add/tasky_commits_python_{args.start}_{args.end}.jsonl"
133
 
134
  with open(tasky_commits_path, "w") as f:
135
  for i in range(len(preds)):
javascript_add/tasky_commits_javascript_0_32909.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ecd7febfb0ed024386ca341d95c9ba58b380add8e7a325b7788d8bee30d5482b
3
+ size 4892266
javascript_add/tasky_commits_javascript_329090_361999.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f14fa8e4462a7ff38d002940ce29754f5a693632b40d2732bd60587ac50a28e8
3
+ size 4929381
javascript_add/tasky_commits_javascript_460726_493635.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:261ca373d5221f247225d77f7136fa6430d5cdffa67f9cb3ad014198e5a6c8ea
3
+ size 4995585
javascript_add/tasky_commits_javascript_65818_98727.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:533ba4d512fc98be2f51fab4d9f9b67ac7f8cda71bed6ced0f78959a8b10e189
3
+ size 4946988