id
stringlengths
14
15
text
stringlengths
101
5.26k
source
stringlengths
57
120
dfe865bf62a8-0
.ipynb .pdf Pinecone Pinecone# Pinecone is a vector database with broad functionality. This notebook shows how to use functionality related to the Pinecone vector database. To use Pinecone, you must have an API key. Here are the installation instructions. !pip install pinecone-client import os import getpass PINECONE_API_KEY = getpass.getpass('Pinecone API Key:') PINECONE_ENV = getpass.getpass('Pinecone Environment:') We want to use OpenAIEmbeddings so we have to get the OpenAI API Key. os.environ['OPENAI_API_KEY'] = getpass.getpass('OpenAI API Key:') from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import Pinecone from langchain.document_loaders import TextLoader from langchain.document_loaders import TextLoader loader = TextLoader('../../../state_of_the_union.txt') documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() import pinecone # initialize pinecone pinecone.init( api_key=PINECONE_API_KEY, # find at app.pinecone.io environment=PINECONE_ENV # next to api key in console ) index_name = "langchain-demo" docsearch = Pinecone.from_documents(docs, embeddings, index_name=index_name) # if you already have an index, you can load it like this # docsearch = Pinecone.from_existing_index(index_name, embeddings) query = "What did the president say about Ketanji Brown Jackson" docs = docsearch.similarity_search(query) print(docs[0].page_content) previous PGVector next Qdrant By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/pinecone.html
ada9ac68c1ef-0
.ipynb .pdf Commented out until further notice Commented out until further notice# MongoDB Atlas Vector Search MongoDB Atlas is a document database managed in the cloud. It also enables Lucene and its vector search feature. This notebook shows how to use the functionality related to the MongoDB Atlas Vector Search feature where you can store your embeddings in MongoDB documents and create a Lucene vector index to perform a KNN search. It uses the knnBeta Operator available in MongoDB Atlas Search. This feature is in early access and available only for evaluation purposes, to validate functionality, and to gather feedback from a small closed group of early access users. It is not recommended for production deployments as we may introduce breaking changes. To use MongoDB Atlas, you must have first deployed a cluster. Free clusters are available. Here is the MongoDB Atlas quick start. !pip install pymongo import os MONGODB_ATLAS_URI = os.environ['MONGODB_ATLAS_URI'] We want to use OpenAIEmbeddings so we have to get the OpenAI API Key. Make sure the environment variable OPENAI_API_KEY is set up before proceeding. Now, let’s create a Lucene vector index on your cluster. In the below example, embedding is the name of the field that contains the embedding vector. Please refer to the documentation to get more details on how to define an Atlas Search index. You can name the index langchain_demo and create the index on the namespace lanchain_db.langchain_col. Finally, write the following definition in the JSON editor: { "mappings": { "dynamic": true, "fields": { "embedding": { "dimensions": 1536, "similarity": "cosine", "type": "knnVector" } } } } from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import MongoDBAtlasVectorSearch from langchain.document_loaders import TextLoader from langchain.document_loaders import TextLoader loader = TextLoader('../../../state_of_the_union.txt') documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() from pymongo import MongoClient # initialize MongoDB python client client = MongoClient(MONGODB_ATLAS_CONNECTION_STRING) db_name = "lanchain_db" collection_name = "langchain_col" collection = client[db_name][collection_name] index_name = "langchain_demo" # insert the documents in MongoDB Atlas with their embedding docsearch = MongoDBAtlasVectorSearch.from_documents( docs, embeddings, collection=collection, index_name=index_name ) # perform a similarity search between the embedding of the query and the embeddings of the documents query = "What did the president say about Ketanji Brown Jackson" docs = docsearch.similarity_search(query) print(docs[0].page_content) You can reuse vector index you created before, make sure environment variable OPENAI_API_KEY is set up, then create another file. from pymongo import MongoClient from langchain.vectorstores import MongoDBAtlasVectorSearch from langchain.embeddings.openai import OpenAIEmbeddings import os MONGODB_ATLAS_URI = os.environ['MONGODB_ATLAS_URI'] # initialize MongoDB python client client = MongoClient(MONGODB_ATLAS_URI) db_name = "langchain_db" collection_name = "langchain_col" collection = client[db_name][collection_name] index_name = "langchain_index" # initialize vector store vectorStore = MongoDBAtlasVectorSearch( collection, OpenAIEmbeddings(), index_name=index_name) # perform a similarity search between the embedding of the query and the embeddings of the documents query = "What did the president say about Ketanji Brown Jackson" docs = vectorStore.similarity_search(query) print(docs[0].page_content) previous Milvus next MyScale By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/mongodb_atlas_vector_search.html
7b4624a88f1a-0
.ipynb .pdf Weaviate Contents Weaviate Similarity search with score Persistance Retriever options Retriever options MMR Question Answering with Sources Weaviate# Weaviate is an open-source vector database. It allows you to store data objects and vector embeddings from your favorite ML-models, and scale seamlessly into billions of data objects. This notebook shows how to use functionality related to the Weaviatevector database. See the Weaviate installation instructions. !pip install weaviate-client Requirement already satisfied: weaviate-client in /workspaces/langchain/.venv/lib/python3.9/site-packages (3.19.1) Requirement already satisfied: requests<2.29.0,>=2.28.0 in /workspaces/langchain/.venv/lib/python3.9/site-packages (from weaviate-client) (2.28.2) Requirement already satisfied: validators<=0.21.0,>=0.18.2 in /workspaces/langchain/.venv/lib/python3.9/site-packages (from weaviate-client) (0.20.0) Requirement already satisfied: tqdm<5.0.0,>=4.59.0 in /workspaces/langchain/.venv/lib/python3.9/site-packages (from weaviate-client) (4.65.0) Requirement already satisfied: authlib>=1.1.0 in /workspaces/langchain/.venv/lib/python3.9/site-packages (from weaviate-client) (1.2.0) Requirement already satisfied: cryptography>=3.2 in /workspaces/langchain/.venv/lib/python3.9/site-packages (from authlib>=1.1.0->weaviate-client) (40.0.2) Requirement already satisfied: charset-normalizer<4,>=2 in /workspaces/langchain/.venv/lib/python3.9/site-packages (from requests<2.29.0,>=2.28.0->weaviate-client) (3.1.0) Requirement already satisfied: idna<4,>=2.5 in /workspaces/langchain/.venv/lib/python3.9/site-packages (from requests<2.29.0,>=2.28.0->weaviate-client) (3.4) Requirement already satisfied: urllib3<1.27,>=1.21.1 in /workspaces/langchain/.venv/lib/python3.9/site-packages (from requests<2.29.0,>=2.28.0->weaviate-client) (1.26.15) Requirement already satisfied: certifi>=2017.4.17 in /workspaces/langchain/.venv/lib/python3.9/site-packages (from requests<2.29.0,>=2.28.0->weaviate-client) (2023.5.7) Requirement already satisfied: decorator>=3.4.0 in /workspaces/langchain/.venv/lib/python3.9/site-packages (from validators<=0.21.0,>=0.18.2->weaviate-client) (5.1.1) Requirement already satisfied: cffi>=1.12 in /workspaces/langchain/.venv/lib/python3.9/site-packages (from cryptography>=3.2->authlib>=1.1.0->weaviate-client) (1.15.1) Requirement already satisfied: pycparser in /workspaces/langchain/.venv/lib/python3.9/site-packages (from cffi>=1.12->cryptography>=3.2->authlib>=1.1.0->weaviate-client) (2.21) We want to use OpenAIEmbeddings so we have to get the OpenAI API Key. import os import getpass os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:") WEAVIATE_URL = getpass.getpass("WEAVIATE_URL:") os.environ["WEAVIATE_API_KEY"] = getpass.getpass("WEAVIATE_API_KEY:") from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import Weaviate from langchain.document_loaders import TextLoader from langchain.document_loaders import TextLoader loader = TextLoader("../../../state_of_the_union.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents)
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/weaviate.html
7b4624a88f1a-1
docs = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() db = Weaviate.from_documents(docs, embeddings, weaviate_url=WEAVIATE_URL, by_text=False) query = "What did the president say about Ketanji Brown Jackson" docs = db.similarity_search(query) print(docs[0].page_content) Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence. Similarity search with score# Sometimes we might want to perform the search, but also obtain a relevancy score to know how good is a particular result. The returned distance score is cosine distance. Therefore, a lower score is better. docs = db.similarity_search_with_score(query, by_text=False) docs[0]
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/weaviate.html
7b4624a88f1a-2
(Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n\nTonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.', metadata={'_additional': {'vector': [-0.015289668, -0.011418287, -0.018540842, 0.00274522, 0.008310737, 0.014179829, 0.0080104275, -0.0010217049, -0.022327352, -0.0055002323, 0.018958665, 0.0020548347, -0.0044393567, -0.021609223, -0.013709779, -0.004543812, 0.025722157, 0.01821442, 0.031728342, -0.031388864, -0.01051083, -0.029978717, 0.011555385, 0.0009751897, 0.014675993, -0.02102166, 0.0301354, -0.031754456, 0.013526983, -0.03392191, 0.002800712, -0.0027778621, -0.024259781, -0.006202043, -0.019950991, 0.0176138, -0.0001134321, 0.008343379, 0.034209162, -0.027654583, 0.03149332, -0.0008389079, 0.0053696632, -0.0024644958, -0.016582303, 0.0066720927, -0.005036711, -0.035514854, 0.002942706, 0.02958701, 0.032825127, 0.015694432, -0.019846536, -0.024520919, -0.021974817, -0.0063293483, -0.01081114, -0.0084282495, 0.003025944, -0.010210521, 0.008780787, 0.014793505, -0.006486031, 0.011966679, 0.01774437, -0.006985459, -0.015459408, 0.01625588, -0.016007798, 0.01706541, 0.035567082, 0.0029900377, 0.021543937, -0.0068483613, 0.040868197, -0.010909067, -0.03339963, 0.010954766, -0.014689049, -0.021596165, 0.0025607906, -0.01599474, -0.017757427, -0.0041651614, 0.010752384, 0.0053598704, -0.00019248774, 0.008480477, -0.010517359, -0.005017126, 0.0020434097, 0.011699011, 0.0051379027, 0.021687564, -0.010830725, 0.020734407, -0.006606808, 0.029769806, 0.02817686, -0.047318324, 0.024338122, -0.001150642, -0.026231378, -0.012325744, -0.0318328, -0.0094989175, -0.00897664, 0.004736402, 0.0046482678, 0.0023241339, -0.005826656, 0.0072531262,
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/weaviate.html
7b4624a88f1a-3
-0.005826656, 0.0072531262, 0.015498579, -0.0077819317, -0.011953622, -0.028934162, -0.033974137, -0.01574666, 0.0086306315, -0.029299757, 0.030213742, -0.0033148287, 0.013448641, -0.013474754, 0.015851116, 0.0076578907, -0.037421167, -0.015185213, 0.010719741, -0.014636821, 0.0001918757, 0.011783881, 0.0036330915, -0.02132197, 0.0031010215, 0.0024334856, -0.0033229894, 0.050086394, 0.0031973163, -0.01115062, 0.004837593, 0.01298512, -0.018645298, -0.02992649, 0.004837593, 0.0067634913, 0.02992649, 0.0145062525, 0.00566018, -0.0017055618, -0.0056667086, 0.012697867, 0.0150677, -0.007559964, -0.01991182, -0.005268472, -0.008650217, -0.008702445, 0.027550127, 0.0018296026, 0.0018589807, -0.033295177, 0.0036265631, -0.0060290387, 0.014349569, 0.019898765, 0.00023339267, 0.0034568228, -0.018958665, 0.012031963, 0.005186866, 0.020747464, -0.03817847, 0.028202975, -0.01340947, 0.00091643346, 0.014884903, -0.02314994, -0.024468692, 0.0004859627, 0.018828096, 0.012906778, 0.027941836, 0.027550127, -0.015028529, 0.018606128, 0.03449641, -0.017757427, -0.016020855, -0.012142947, 0.025304336, 0.00821281, -0.0025461016, -0.01902395, -0.635507, -0.030083172, 0.0177052, -0.0104912445, 0.012502013, -0.0010747487, 0.00465806, 0.020825805, -0.006887532, 0.013892576, -0.019977106, 0.029952602, 0.0012004217, -0.015211326, -0.008708973, -0.017809656, 0.008578404, -0.01612531, 0.022614606, -0.022327352, -0.032616217, 0.0050693536, -0.020629952, -0.01357921, 0.011477043, 0.0013938275, -0.0052390937, 0.0142581705, -0.013200559, 0.013252786, -0.033582427, 0.030579336, -0.011568441, 0.0038387382, 0.049564116, 0.016791213, -0.01991182, 0.010889481, -0.0028251936, 0.035932675, -0.02183119, -0.008611047, 0.025121538, 0.008349908, 0.00035641342, 0.009028868, 0.007631777, -0.01298512, -0.0015350056, 0.009982024, -0.024207553, -0.003332782, 0.006283649, 0.01868447,
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/weaviate.html
7b4624a88f1a-4
0.006283649, 0.01868447, -0.010732798, -0.00876773, -0.0075273216, -0.016530076, 0.018175248, 0.016020855, -0.00067284, 0.013461698, -0.0065904865, -0.017809656, -0.014741276, 0.016582303, -0.0088526, 0.0046482678, 0.037473395, -0.02237958, 0.010112594, 0.022549322, 9.680491e-05, -0.0059082615, 0.020747464, -0.026923396, 0.01162067, -0.0074816225, 0.00024277734, 0.011842638, 0.016921783, -0.019285088, 0.005565517, 0.0046907025, 0.018109964, 0.0028676286, -0.015080757, -0.01536801, 0.0024726565, 0.020943318, 0.02187036, 0.0037767177, 0.018997835, -0.026766712, 0.005026919, 0.015942514, 0.0097469995, -0.0067830766, 0.023828901, -0.01523744, -0.0121494755, 0.00744898, 0.010445545, -0.011006993, -0.0032789223, 0.020394927, -0.017796598, -0.0029116957, 0.02318911, -0.031754456, -0.018188305, -0.031441092, -0.030579336, 0.0011832844, 0.0065023527, -0.027053965, 0.009198609, 0.022079272, -0.027785152, 0.005846241, 0.013500868, 0.016699815, 0.010445545, -0.025265165, -0.004396922, 0.0076774764, 0.014597651, -0.009851455, -0.03637661, 0.0004745379, -0.010112594, -0.009205136, 0.01578583, 0.015211326, -0.0011653311, -0.0015847852, 0.01489796, -0.01625588, -0.0029067993, -0.011411758, 0.0046286825, 0.0036330915, -0.0034143878, 0.011894866, -0.03658552, 0.007266183, -0.015172156, -0.02038187, -0.033739112, 0.0018948873, -0.011379116, -0.0020923733, -0.014075373, 0.01970291, 0.0020352493, -0.0075273216, -0.02136114, 0.0027974476, -0.009577259, -0.023815846, 0.024847344, 0.014675993, -0.019454828, -0.013670608, 0.011059221, -0.005438212, 0.0406854, 0.0006218364, -0.024494806, -0.041259903, 0.022013986, -0.0040019494, -0.0052097156, 0.015798887, 0.016190596, 0.0003794671, -0.017444061, 0.012325744, 0.024769, 0.029482553, -0.0046547963, -0.015955571, -0.018397218, -0.0102431625, 0.020577725, 0.016190596, -0.02038187, 0.030030945, -0.01115062,
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/weaviate.html
7b4624a88f1a-5
0.030030945, -0.01115062, 0.0032560725, -0.014819618, 0.005647123, -0.0032560725, 0.0038909658, 0.013311543, 0.024285894, -0.0045699263, -0.010112594, 0.009237779, 0.008728559, 0.0423828, 0.010909067, 0.04225223, -0.031806685, -0.013696723, -0.025787441, 0.00838255, -0.008715502, 0.006776548, 0.01825359, -0.014480138, -0.014427911, -0.017600743, -0.030004831, 0.0145845935, 0.013762007, -0.013226673, 0.004168425, 0.0047951583, -0.026923396, 0.014675993, 0.0055851024, 0.015616091, -0.012306159, 0.007670948, 0.038439605, -0.015759716, 0.00016178355, 0.01076544, -0.008232395, -0.009942854, 0.018801982, -0.0025314125, 0.030709906, -0.001442791, -0.042617824, -0.007409809, -0.013109161, 0.031101612, 0.016229765, 0.006162872, 0.017901054, -0.0063619902, -0.0054577976, 0.01872364, -0.0032430156, 0.02966535, 0.006495824, 0.0011008625, -0.00024318536, -0.007011573, -0.002746852, -0.004298995, 0.007710119, 0.03407859, -0.008898299, -0.008565348, 0.030527107, -0.0003027576, 0.025082368, 0.0405026, 0.03867463, 0.0014117807, -0.024076983, 0.003933401, -0.009812284, 0.00829768, -0.0074293944, 0.0061530797, -0.016647588, -0.008147526, -0.015629148, 0.02055161, 0.000504324, 0.03157166, 0.010112594, -0.009009283, 0.026557801, -0.013997031, -0.0071878415, 0.009414048, -0.03480978, 0.006626393, 0.013827291, -0.011444401, -0.011823053, -0.0042957305, -0.016229765, -0.014192886, 0.026531687, -0.012534656, -0.0056569157, -0.0010331298, 0.007977786, 0.0033654245, -0.017352663, 0.034626983, -0.011803466, 0.009035396, 0.0005288057, 0.020421041, 0.013115689, -0.0152504975, -0.0111114485, 0.032355078, 0.0025542623, -0.0030226798, -0.00074261305, 0.030892702, -0.026218321, 0.0062803845, -0.018031623, -0.021504767, -0.012834964, 0.009009283, -0.0029198565, -0.014349569, -0.020434098, 0.009838398, -0.005993132, -0.013618381, -0.031597774, -0.019206747, 0.00086583785, 0.15835446,
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/weaviate.html
7b4624a88f1a-6
0.00086583785, 0.15835446, 0.033765227, 0.00893747, 0.015119928, -0.019128405, 0.0079582, -0.026270548, -0.015877228, 0.014153715, -0.011960151, 0.007853745, 0.006972402, -0.014101488, 0.02456009, 0.015119928, -0.0018850947, 0.019010892, -0.0046188897, -0.0050954674, -0.03548874, -0.01608614, -0.00324628, 0.009466276, 0.031911142, 7.033402e-05, -0.025095424, 0.020225188, 0.014832675, 0.023228282, -0.011829581, -0.011300774, -0.004073763, 0.0032544404, -0.0025983294, -0.020943318, 0.019650683, -0.0074424515, -0.0030977572, 0.0073379963, -0.00012455089, 0.010230106, -0.0007254758, -0.0025052987, -0.009681715, 0.03439196, -0.035123147, -0.0028806855, 0.012828437, 0.00018646932, 0.0066133365, 0.025539361, -0.00055736775, -0.025356563, -0.004537284, -0.007031158, 0.015825002, -0.013076518, 0.00736411, -0.00075689406, 0.0076578907, -0.019337315, -0.0024187965, -0.0110331075, -0.01187528, 0.0013048771, 0.0009711094, -0.027863493, -0.020616895, -0.0024481746, -0.0040802914, 0.014571536, -0.012306159, -0.037630077, 0.012652168, 0.009068039, -0.0018263385, 0.0371078, -0.0026831995, 0.011333417, -0.011548856, -0.0059049972, -0.025186824, 0.0069789304, -0.010993936, -0.0009066408, 0.0002619547, 0.01727432, -0.008082241, -0.018645298, 0.024507863, 0.0030895968, -0.0014656406, 0.011137563, -0.025513247, -0.022967143, -0.002033617, 0.006887532, 0.016621474, -0.019337315, -0.0030618508, 0.0014697209, -0.011679426, -0.003597185, -0.0049844836, -0.012332273, 0.009068039, 0.009407519, 0.027080078, -0.011215905, -0.0062542707, -0.0013114056, -0.031911142, 0.011209376, 0.009903682, -0.007351053, 0.021335026, -0.005510025, 0.0062053073, -0.010869896, -0.0045601334, 0.017561574, -0.024847344, 0.04115545, -0.00036457402, -0.0061400225, 0.013037347, -0.005480647, 0.005947433, 0.020799693, 0.014702106, 0.03272067, 0.026701428, -0.015550806, -0.036193814, -0.021126116,
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/weaviate.html
7b4624a88f1a-7
-0.036193814, -0.021126116, -0.005412098, -0.013076518, 0.027080078, 0.012900249, -0.0073379963, -0.015119928, -0.019781252, 0.0062346854, -0.03266844, 0.025278222, -0.022797402, -0.0028415148, 0.021452539, -0.023162996, 0.005170545, -0.022314297, 0.011215905, -0.009838398, -0.00033233972, 0.0019650683, 0.0026326037, 0.009753528, -0.0029639236, 0.021126116, 0.01944177, -0.00044883206, -0.00961643, 0.008846072, -0.0035775995, 0.02352859, -0.0020956376, 0.0053468137, 0.013305014, 0.0006418298, 0.023802789, 0.013122218, -0.0031548813, -0.027471786, 0.005046504, 0.008545762, 0.011261604, -0.01357921, -0.01110492, -0.014845733, -0.035384286, -0.02550019, 0.008154054, -0.0058331843, -0.008702445, -0.007311882, -0.006525202, 0.03817847, 0.00372449, 0.022914914, -0.0018981516, 0.031545546, -0.01051083, 0.013801178, -0.006296706, -0.00025052988, -0.01795328, -0.026296662, 0.0017659501, 0.021883417, 0.0028937424, 0.00495837, -0.011888337, -0.008950527, -0.012058077, 0.020316586, 0.00804307, -0.0068483613, -0.0038387382, 0.019715967, -0.025069311, -0.000797697, -0.04507253, -0.009179023, -0.016242823, 0.013553096, -0.0019014158, 0.010223578, 0.0062934416, -5.5644974e-05, -0.038282923, -0.038544063, -0.03162389, -0.006815719, 0.009936325, 0.014192886, 0.02277129, -0.006972402, -0.029769806, 0.034862008, 0.01217559, -0.0037179615, 0.0008666539, 0.008924413, -0.026296662, -0.012678281, 0.014480138, 0.020734407, -0.012103776, -0.037499506, 0.022131499, 0.015028529, -0.033843566, 0.00020187242, 0.002650557, -0.0015113399, 0.021570051, -0.008284623, -0.003793039, -0.013422526, -0.009655601, -0.0016614947, -0.02388113, 0.00114901, 0.0034405016, 0.02796795, -0.039118566, 0.0023975791, -0.010608757, 0.00093438674, 0.0017382042, -0.02047327, 0.026283605, -0.020799693, 0.005947433, -0.014349569, 0.009890626, -0.022719061, -0.017248206, 0.0042565595, 0.022327352,
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/weaviate.html
7b4624a88f1a-8
0.0042565595, 0.022327352, -0.015681375, -0.013840348, 6.502964e-05, 0.015485522, -0.002678303, -0.0047984226, -0.012182118, -0.001512972, 0.013931747, -0.009642544, 0.012652168, -0.012932892, -0.027759038, -0.01085031, 0.0050236546, -0.009675186, -0.00893747, -0.0051770736, 0.036011018, 0.003528636, -0.001008648, -0.015811944, -0.008865656, 0.012364916, 0.016621474, -0.01340947, 0.03219839, 0.032955695, -0.021517823, 0.00372449, -0.045124754, 0.015589978, -0.033582427, -0.01642562, -0.009609901, -0.031179955, 0.0012591778, -0.011176733, -0.018658355, -0.015224383, 0.014884903, 0.013083046, 0.0063587264, -0.008238924, -0.008917884, -0.003877909, 0.022836573, -0.004374072, -0.031127727, 0.02604858, -0.018136078, 0.000769951, -0.002312709, -0.025095424, -0.010621814, 0.013207087, 0.013944804, -0.0070899143, -0.022183727, -0.0028088724, -0.011424815, 0.026087752, -0.0058625625, -0.020186016, -0.010217049, 0.015315781, -0.012580355, 0.01374895, 0.004948577, -0.0021854038, 0.023215225, 0.00207442, 0.029639237, 0.01391869, -0.015811944, -0.005356606, -0.022327352, -0.021844247, -0.008310737, -0.020786636, -0.022484036, 0.011411758, 0.005826656, 0.012188647, -0.020394927, -0.0013024289, -0.027315103, -0.017000126, -0.0010600596, -0.0019014158, 0.016712872, 0.0012673384, 0.02966535, 0.02911696, -0.03081436, 0.025552418, 0.0014215735, -0.02510848, 0.020277414, -0.02672754, 0.01829276, 0.03381745, -0.013957861, 0.0049094064, 0.033556316, 0.005167281, 0.0176138, 0.014140658, -0.0043708077, -0.0095446175, 0.012952477, 0.007853745, -0.01034109, 0.01804468, 0.0038322096, -0.04959023, 0.0023078127, 0.0053794556, -0.015106871, -0.03225062, -0.010073422, 0.007285768, 0.0056079524, -0.009002754, -0.014362626, 0.010909067, 0.009779641, -0.02796795, 0.013246258, 0.025474075, -0.001247753, 0.02442952, 0.012802322, -0.032276735, 0.0029802448, 0.014179829, 0.010321504,
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/weaviate.html
7b4624a88f1a-9
0.014179829, 0.010321504, 0.0053337566, -0.017156808, -0.010439017, 0.034444187, -0.010393318, -0.006042096, -0.018566957, 0.004517698, -0.011228961, -0.009015812, -0.02089109, 0.022484036, 0.0029867734, -0.029064732, -0.010236635, -0.0006761042, -0.029038617, 0.004367544, -0.012293102, 0.0017528932, -0.023358852, 0.02217067, 0.012606468, -0.008160583, -0.0104912445, -0.0034894652, 0.011078807, 0.00050922035, 0.015759716, 0.23774062, -0.0019291617, 0.006218364, 0.013762007, -0.029900376, 0.018188305, 0.0092965355, 0.0040574414, -0.014976301, -0.006228157, -0.016647588, 0.0035188433, -0.01919369, 0.0037506039, 0.029247528, -0.014532366, -0.049773026, -0.019624569, -0.034783665, -0.015028529, 0.0097469995, 0.016281994, 0.0047135525, -0.011294246, 0.011477043, 0.015485522, 0.03426139, 0.014323455, 0.011052692, -0.008362965, -0.037969556, -0.00252162, -0.013709779, -0.0030292084, -0.016569246, -0.013879519, 0.0011849166, -0.0016925049, 0.009753528, 0.008349908, -0.008245452, 0.033007924, -0.0035873922, -0.025461018, 0.016791213, 0.05410793, -0.005950697, -0.011672897, -0.0072335405, 0.013814235, -0.0593307, -0.008624103, 0.021400312, 0.034235276, 0.015642203, -0.020068504, 0.03136275, 0.012567298, -0.010419431, 0.027445672, -0.031754456, 0.014219, -0.0075403787, 0.03812624, 0.0009988552, 0.038752973, -0.018005509, 0.013670608, 0.045882057, -0.018841153, -0.031650003, 0.010628343, -0.00459604, -0.011999321, -0.028202975, -0.018593071, 0.029743692, 0.021857304, 0.01438874, 0.00014128008, -0.006156344, -0.006691678, 0.01672593, -0.012821908, -0.0024367499, -0.03219839, 0.0058233915, -0.0056405943, -0.009381405, 0.0064044255, 0.013905633, -0.011228961, -0.0013481282, -0.014023146, 0.00016239559, -0.0051901303, 0.0025265163, 0.023619989, -0.021517823, 0.024703717, -0.025643816, 0.040189236, 0.016295051, -0.0040411204, -0.0113595305, 0.0029981981, -0.015589978,
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/weaviate.html
7b4624a88f1a-10
0.0029981981, -0.015589978, 0.026479458, 0.0067439056, -0.035775993, -0.010550001, -0.014767391, -0.009897154, -0.013944804, -0.0147543335, 0.015798887, -0.02456009, -0.0018850947, 0.024442578, 0.0019715966, -0.02422061, -0.02945644, -0.003443766, 0.0004945313, 0.0011522742, -0.020773578, -0.011777353, 0.008173639, -0.012325744, -0.021348083, 0.0036461484, 0.0063228197, 0.00028970066, -0.0036200345, -0.021596165, -0.003949722, -0.0006034751, 0.007305354, -0.023424136, 0.004834329, -0.008833014, -0.013435584, 0.0026097542, -0.0012240873, -0.0028349862, -0.01706541, 0.027863493, -0.026414175, -0.011783881, 0.014075373, -0.005634066, -0.006313027, -0.004638475, -0.012495484, 0.022836573, -0.022719061, -0.031284407, -0.022405695, -0.017352663, 0.021113059, -0.03494035, 0.002772966, 0.025643816, -0.0064240107, -0.009897154, 0.0020711557, -0.16409951, 0.009688243, 0.010393318, 0.0033262535, 0.011059221, -0.012919835, 0.0014493194, -0.021857304, -0.0075730206, -0.0020695236, 0.017822713, 0.017417947, -0.034835894, -0.009159437, -0.0018573486, -0.0024840813, -0.022444865, 0.0055687814, 0.0037767177, 0.0033915383, 0.0301354, -0.012227817, 0.0021854038, -0.042878963, 0.021517823, -0.010419431, -0.0051183174, 0.01659536, 0.0017333078, -0.00727924, -0.0020026069, -0.0012493852, 0.031441092, 0.0017431005, 0.008702445, -0.0072335405, -0.020081561, -0.012423672, -0.0042239176, 0.031049386, 0.04324456, 0.02550019, 0.014362626, -0.0107393265, -0.0037538682, -0.0061791935, -0.006737377, 0.011548856, -0.0166737, -0.012828437, -0.003375217, -0.01642562, -0.011424815, 0.007181313, 0.017600743, -0.0030226798, -0.014192886, 0.0128937205, -0.009975496, 0.0051444313, -0.0044654706, -0.008826486, 0.004158633, 0.004971427, -0.017835768, 0.025017083, -0.021792019, 0.013657551, -0.01872364, 0.009100681, -0.0079582, -0.011640254, -0.01093518, -0.0147543335, -0.005000805,
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/weaviate.html
7b4624a88f1a-11
-0.0147543335, -0.005000805, 0.02345025, -0.028908048, 0.0104912445, -0.00753385, 0.017561574, -0.012025435, 0.042670052, -0.0041978033, 0.0013056932, -0.009263893, -0.010941708, -0.004471999, 0.01008648, -0.002578744, -0.013931747, 0.018619185, -0.04029369, -0.00025909848, 0.0030063589, 0.003149985, 0.011091864, 0.006495824, 0.00026583098, 0.0045503406, -0.007586078, -0.0007475094, -0.016856499, -0.003528636, 0.038282923, -0.0010494508, 0.024494806, 0.012593412, 0.032433417, -0.003203845, 0.005947433, -0.019937934, -0.00017800271, 0.027706811, 0.03047488, 0.02047327, 0.0019258976, -0.0068940604, -0.0014990991, 0.013305014, -0.007690533, 0.058808424, -0.0016859764, -0.0044622063, -0.0037734534, 0.01578583, -0.0018459238, -0.1196015, -0.0007075225, 0.0030341048, 0.012306159, -0.0068483613, 0.01851473, 0.015315781, 0.031388864, -0.015563863, 0.04776226, -0.008199753, -0.02591801, 0.00546759, -0.004915935, 0.0050824108, 0.0027011528, -0.009205136, -0.016712872, -0.0033409426, 0.0043218443, -0.018279705, 0.00876773, 0.0050138617, -0.009688243, -0.017783541, -0.018645298, -0.010380261, 0.018606128, 0.0077492893, 0.007324939, -0.012704396, -0.002692992, -0.01259994, -0.0076970616, -0.013814235, -0.0004365912, -0.023606932, -0.020186016, 0.025330449, -0.00991674, -0.0048278007, -0.019350372, 0.015433294, -0.0056144805, -0.0034927295, -0.00043455104, 0.008611047, 0.025748271, 0.022353467, -0.020747464, -0.015759716, 0.029038617, -0.000377631, -0.028725252, 0.018109964, -0.0016125311, -0.022719061, -0.009133324, -0.033060152, 0.011248547, -0.0019797573, -0.007181313, 0.0018867267, 0.0070899143, 0.004077027, 0.0055328747, -0.014245113, -0.021217514, -0.006750434, -0.038230695, 0.013233202, 0.014219, -0.017692143, 0.024742888, -0.008833014, -0.00753385, -0.026923396, -0.0021527617, 0.013135274, -0.018070793, -0.013500868, -0.0016696552, 0.011568441, -0.03230285,
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/weaviate.html
7b4624a88f1a-12
0.011568441, -0.03230285, 0.023646105, 0.0111114485, -0.015172156, 0.0257091, 0.0045699263, -0.00919208, 0.021517823, 0.037838988, 0.00787333, -0.007755818, -0.028281316, 0.011170205, -0.005412098, -0.016321165, 0.009929797, 0.004609097, -0.03047488, 0.002688096, -0.07264877, 0.024455635, -0.020930262, -0.015381066, -0.0033148287, 0.027236762, 0.0014501355, -0.014101488, -0.024076983, 0.026218321, -0.009009283, 0.019624569, 0.0020646274, -0.009081096, -0.01565526, -0.003358896, 0.048571788, -0.004857179, 0.022444865, 0.024181439, 0.00080708164, 0.024873456, 3.463147e-05, 0.0010535312, -0.017940223, 0.0012159267, -0.011065749, 0.008258509, -0.018527785, -0.022797402, 0.012377972, -0.002087477, 0.010791554, 0.022288183, 0.0048604426, -0.032590102, 0.013709779, 0.004922463, 0.020055447, -0.0150677, -0.0057222005, -0.036246043, 0.0021364405, 0.021387255, -0.013435584, 0.010732798, 0.0075534354, -0.00061612396, -0.002018928, -0.004432828, -0.032746784, 0.025513247, -0.0025852725, 0.014467081, -0.008617575, -0.019755138, 0.003966043, -0.0033915383, 0.0004088452, -0.025173767, 0.02796795, 0.0023763615, 0.0052358294, 0.017796598, 0.014806561, 0.0150024155, -0.005859298, 0.01259994, 0.021726735, -0.026466403, -0.017457118, -0.0025493659, 0.0070899143, 0.02668837, 0.015485522, -0.011588027, 0.01906312, -0.003388274, -0.010210521, 0.020956375, 0.028620796, -0.018540842, 0.0025722156, 0.0110331075, -0.003992157, 0.020930262, 0.008487006, 0.0016557822, -0.0009882465, 0.0062640635, -0.016242823, -0.0007785196, -0.0007213955, 0.018971723, 0.021687564, 0.0039464575, -0.01574666, 0.011783881, -0.0019797573, -0.013383356, -0.002706049, 0.0037734534, 0.020394927, -0.00021931567, 0.0041814824, 0.025121538, -0.036246043, -0.019428715, -0.023802789, 0.014845733, 0.015420238, 0.019650683, 0.008186696, 0.025304336, -0.03204171, 0.01774437, 0.0021233836,
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/weaviate.html
7b4624a88f1a-13
0.01774437, 0.0021233836, -0.008434778, -0.0059441687, 0.038335152, 0.022653777, -0.0066002794, 0.02149171, 0.015093814, 0.025382677, -0.007579549, 0.0030357367, -0.0014117807, -0.015341896, 0.014545423, 0.007135614, -0.0113595305, -0.04387129, 0.016308108, -0.008186696, -0.013370299, -0.014297341, 0.017431004, -0.022666834, 0.039458048, 0.0032005806, -0.02081275, 0.008526176, -0.0019307939, 0.024024757, 0.009068039, 0.00953156, 0.010608757, 0.013801178, 0.035932675, -0.015185213, -0.0038322096, -0.012462842, -0.03655941, 0.0013946436, 0.00025726235, 0.008016956, -0.0042565595, 0.008447835, 0.0038191527, -0.014702106, 0.02196176, 0.0052097156, -0.010869896, 0.0051640165, 0.030840475, -0.041468814, 0.009250836, -0.018997835, 0.020107675, 0.008421721, -0.016373392, 0.004602568, 0.0327729, -0.00812794, 0.001581521, 0.019350372, 0.016112253, 0.02132197, 0.00043944738, -0.01472822, -0.025735214, -0.03313849, 0.0033817457, 0.028855821, -0.016033912, 0.0050791465, -0.01808385]}, 'source': '../../../state_of_the_union.txt'}),
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/weaviate.html
7b4624a88f1a-14
0.8154189703772676) Persistance# Anything uploaded to weaviate is automatically persistent into the database. You do not need to call any specific method or pass any param for this to happen. Retriever options# Retriever options# This section goes over different options for how to use Weaviate as a retriever. MMR# In addition to using similarity search in the retriever object, you can also use mmr. retriever = db.as_retriever(search_type="mmr") retriever.get_relevant_documents(query)[0] Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n\nTonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.', metadata={'source': '../../../state_of_the_union.txt'}) Question Answering with Sources# This section goes over how to do question-answering with sources over an Index. It does this by using the RetrievalQAWithSourcesChain, which does the lookup of the documents from an Index. from langchain.chains import RetrievalQAWithSourcesChain from langchain import OpenAI with open("../../../state_of_the_union.txt") as f: state_of_the_union = f.read() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_text(state_of_the_union) docsearch = Weaviate.from_texts( texts, embeddings, weaviate_url=WEAVIATE_URL, by_text=False, metadatas=[{"source": f"{i}-pl"} for i in range(len(texts))], ) chain = RetrievalQAWithSourcesChain.from_chain_type( OpenAI(temperature=0), chain_type="stuff", retriever=docsearch.as_retriever() ) chain( {"question": "What did the president say about Justice Breyer"}, return_only_outputs=True, ) {'answer': " The president honored Justice Breyer for his service and mentioned his legacy of excellence. He also nominated Circuit Court of Appeals Judge Ketanji Brown Jackson to continue Justice Breyer's legacy.\n", 'sources': '31-pl, 34-pl'} previous Vectara next Zilliz Contents Weaviate Similarity search with score Persistance Retriever options Retriever options MMR Question Answering with Sources By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/weaviate.html
ff4c412eb27d-0
.ipynb .pdf AnalyticDB AnalyticDB# AnalyticDB for PostgreSQL is a massively parallel processing (MPP) data warehousing service that is designed to analyze large volumes of data online. AnalyticDB for PostgreSQL is developed based on the open source Greenplum Database project and is enhanced with in-depth extensions by Alibaba Cloud. AnalyticDB for PostgreSQL is compatible with the ANSI SQL 2003 syntax and the PostgreSQL and Oracle database ecosystems. AnalyticDB for PostgreSQL also supports row store and column store. AnalyticDB for PostgreSQL processes petabytes of data offline at a high performance level and supports highly concurrent online queries. This notebook shows how to use functionality related to the AnalyticDB vector database. To run, you should have an AnalyticDB instance up and running: Using AnalyticDB Cloud Vector Database. Click here to fast deploy it. from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import AnalyticDB Split documents and get embeddings by call OpenAI API from langchain.document_loaders import TextLoader loader = TextLoader('../../../state_of_the_union.txt') documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() Connect to AnalyticDB by setting related ENVIRONMENTS. export PG_HOST={your_analyticdb_hostname} export PG_PORT={your_analyticdb_port} # Optional, default is 5432 export PG_DATABASE={your_database} # Optional, default is postgres export PG_USER={database_username} export PG_PASSWORD={database_password} Then store your embeddings and documents into AnalyticDB import os connection_string = AnalyticDB.connection_string_from_db_params( driver=os.environ.get("PG_DRIVER", "psycopg2cffi"), host=os.environ.get("PG_HOST", "localhost"), port=int(os.environ.get("PG_PORT", "5432")), database=os.environ.get("PG_DATABASE", "postgres"), user=os.environ.get("PG_USER", "postgres"), password=os.environ.get("PG_PASSWORD", "postgres"), ) vector_db = AnalyticDB.from_documents( docs, embeddings, connection_string= connection_string, ) Query and retrieve data query = "What did the president say about Ketanji Brown Jackson" docs = vector_db.similarity_search(query) print(docs[0].page_content) Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence. previous Getting Started next Annoy By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/analyticdb.html
eb60cb15db1a-0
.ipynb .pdf Tair Tair# Tair is a cloud native in-memory database service developed by Alibaba Cloud. It provides rich data models and enterprise-grade capabilities to support your real-time online scenarios while maintaining full compatibility with open source Redis. Tair also introduces persistent memory-optimized instances that are based on the new non-volatile memory (NVM) storage medium. This notebook shows how to use functionality related to the Tair vector database. To run, you should have a Tair instance up and running. from langchain.embeddings.fake import FakeEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import Tair from langchain.document_loaders import TextLoader loader = TextLoader('../../../state_of_the_union.txt') documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings = FakeEmbeddings(size=128) Connect to Tair using the TAIR_URL environment variable export TAIR_URL="redis://{username}:{password}@{tair_address}:{tair_port}" or the keyword argument tair_url. Then store documents and embeddings into Tair. tair_url = "redis://localhost:6379" # drop first if index already exists Tair.drop_index(tair_url=tair_url) vector_store = Tair.from_documents( docs, embeddings, tair_url=tair_url ) Query similar documents. query = "What did the president say about Ketanji Brown Jackson" docs = vector_store.similarity_search(query) docs[0] Document(page_content='We’re going after the criminals who stole billions in relief money meant for small businesses and millions of Americans. \n\nAnd tonight, I’m announcing that the Justice Department will name a chief prosecutor for pandemic fraud. \n\nBy the end of this year, the deficit will be down to less than half what it was before I took office. \n\nThe only president ever to cut the deficit by more than one trillion dollars in a single year. \n\nLowering your costs also means demanding more competition. \n\nI’m a capitalist, but capitalism without competition isn’t capitalism. \n\nIt’s exploitation—and it drives up prices. \n\nWhen corporations don’t have to compete, their profits go up, your prices go up, and small businesses and family farmers and ranchers go under. \n\nWe see it happening with ocean carriers moving goods in and out of America. \n\nDuring the pandemic, these foreign-owned companies raised prices by as much as 1,000% and made record profits.', metadata={'source': '../../../state_of_the_union.txt'}) previous Supabase (Postgres) next Tigris By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/tair.html
2a54a6e799c5-0
.ipynb .pdf Atlas Atlas# Atlas is a platform for interacting with both small and internet scale unstructured datasets by Nomic. This notebook shows you how to use functionality related to the AtlasDB vectorstore. !pip install spacy !python3 -m spacy download en_core_web_sm !pip install nomic import time from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import SpacyTextSplitter from langchain.vectorstores import AtlasDB from langchain.document_loaders import TextLoader ATLAS_TEST_API_KEY = '7xDPkYXSYDc1_ErdTPIcoAR9RNd8YDlkS3nVNXcVoIMZ6' loader = TextLoader('../../../state_of_the_union.txt') documents = loader.load() text_splitter = SpacyTextSplitter(separator='|') texts = [] for doc in text_splitter.split_documents(documents): texts.extend(doc.page_content.split('|')) texts = [e.strip() for e in texts] db = AtlasDB.from_texts(texts=texts, name='test_index_'+str(time.time()), # unique name for your vector store description='test_index', #a description for your vector store api_key=ATLAS_TEST_API_KEY, index_kwargs={'build_topic_model': True}) db.project.wait_for_project_lock() db.project test_index_1677255228.136989 A description for your project 508 datums inserted. 1 index built. Projections test_index_1677255228.136989_index. Status Completed. view online Projection ID: db996d77-8981-48a0-897a-ff2c22bbf541 Hide embedded project Explore on atlas.nomic.ai previous Annoy next Chroma By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/atlas.html
8b1c5da89410-0
.ipynb .pdf Qdrant Contents Connecting to Qdrant from LangChain Local mode In-memory On-disk storage On-premise server deployment Qdrant Cloud Reusing the same collection Similarity search Similarity search with score Metadata filtering Maximum marginal relevance search (MMR) Qdrant as a Retriever Customizing Qdrant Qdrant# Qdrant (read: quadrant ) is a vector similarity search engine. It provides a production-ready service with a convenient API to store, search, and manage points - vectors with an additional payload. Qdrant is tailored to extended filtering support. It makes it useful for all sorts of neural network or semantic-based matching, faceted search, and other applications. This notebook shows how to use functionality related to the Qdrant vector database. There are various modes of how to run Qdrant, and depending on the chosen one, there will be some subtle differences. The options include: Local mode, no server required On-premise server deployment Qdrant Cloud See the installation instructions. !pip install qdrant-client We want to use OpenAIEmbeddings so we have to get the OpenAI API Key. import os import getpass os.environ['OPENAI_API_KEY'] = getpass.getpass('OpenAI API Key:') OpenAI API Key: ········ from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import Qdrant from langchain.document_loaders import TextLoader loader = TextLoader('../../../state_of_the_union.txt') documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() Connecting to Qdrant from LangChain# Local mode# Python client allows you to run the same code in local mode without running the Qdrant server. That’s great for testing things out and debugging or if you plan to store just a small amount of vectors. The embeddings might be fully kepy in memory or persisted on disk. In-memory# For some testing scenarios and quick experiments, you may prefer to keep all the data in memory only, so it gets lost when the client is destroyed - usually at the end of your script/notebook. qdrant = Qdrant.from_documents( docs, embeddings, location=":memory:", # Local mode with in-memory storage only collection_name="my_documents", ) On-disk storage# Local mode, without using the Qdrant server, may also store your vectors on disk so they’re persisted between runs. qdrant = Qdrant.from_documents( docs, embeddings, path="/tmp/local_qdrant", collection_name="my_documents", ) On-premise server deployment# No matter if you choose to launch Qdrant locally with a Docker container, or select a Kubernetes deployment with the official Helm chart, the way you’re going to connect to such an instance will be identical. You’ll need to provide a URL pointing to the service. url = "<---qdrant url here --->" qdrant = Qdrant.from_documents( docs, embeddings, url, prefer_grpc=True, collection_name="my_documents", ) Qdrant Cloud# If you prefer not to keep yourself busy with managing the infrastructure, you can choose to set up a fully-managed Qdrant cluster on Qdrant Cloud. There is a free forever 1GB cluster included for trying out. The main difference with using a managed version of Qdrant is that you’ll need to provide an API key to secure your deployment from being accessed publicly. url = "<---qdrant cloud cluster url here --->" api_key = "<---api key here--->" qdrant = Qdrant.from_documents( docs, embeddings, url, prefer_grpc=True, api_key=api_key, collection_name="my_documents", ) Reusing the same collection# Both Qdrant.from_texts and Qdrant.from_documents methods are great to start using Qdrant with LangChain, but they are going to destroy the collection and create it from scratch! If you want to reuse the existing collection, you can always create an instance of Qdrant on your own and pass the QdrantClient instance with the connection details. del qdrant import qdrant_client
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/qdrant.html
8b1c5da89410-1
del qdrant import qdrant_client client = qdrant_client.QdrantClient( path="/tmp/local_qdrant", prefer_grpc=True ) qdrant = Qdrant( client=client, collection_name="my_documents", embeddings=embeddings ) Similarity search# The simplest scenario for using Qdrant vector store is to perform a similarity search. Under the hood, our query will be encoded with the embedding_function and used to find similar documents in Qdrant collection. query = "What did the president say about Ketanji Brown Jackson" found_docs = qdrant.similarity_search(query) print(found_docs[0].page_content) Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence. Similarity search with score# Sometimes we might want to perform the search, but also obtain a relevancy score to know how good is a particular result. The returned distance score is cosine distance. Therefore, a lower score is better. query = "What did the president say about Ketanji Brown Jackson" found_docs = qdrant.similarity_search_with_score(query) document, score = found_docs[0] print(document.page_content) print(f"\nScore: {score}") Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence. Score: 0.8153784913324512 Metadata filtering# Qdrant has an extensive filtering system with rich type support. It is also possible to use the filters in Langchain, by passing an additional param to both the similarity_search_with_score and similarity_search methods. from qdrant_client.http import models as rest query = "What did the president say about Ketanji Brown Jackson" found_docs = qdrant.similarity_search_with_score(query, filter=rest.Filter(...)) Maximum marginal relevance search (MMR)# If you’d like to look up for some similar documents, but you’d also like to receive diverse results, MMR is method you should consider. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. query = "What did the president say about Ketanji Brown Jackson" found_docs = qdrant.max_marginal_relevance_search(query, k=2, fetch_k=10) for i, doc in enumerate(found_docs): print(f"{i + 1}.", doc.page_content, "\n") 1. Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court.
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/qdrant.html
8b1c5da89410-2
And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence. 2. We can’t change how divided we’ve been. But we can change how we move forward—on COVID-19 and other issues we must face together. I recently visited the New York City Police Department days after the funerals of Officer Wilbert Mora and his partner, Officer Jason Rivera. They were responding to a 9-1-1 call when a man shot and killed them with a stolen gun. Officer Mora was 27 years old. Officer Rivera was 22. Both Dominican Americans who’d grown up on the same streets they later chose to patrol as police officers. I spoke with their families and told them that we are forever in debt for their sacrifice, and we will carry on their mission to restore the trust and safety every community deserves. I’ve worked on these issues a long time. I know what works: Investing in crime preventionand community police officers who’ll walk the beat, who’ll know the neighborhood, and who can restore trust and safety. Qdrant as a Retriever# Qdrant, as all the other vector stores, is a LangChain Retriever, by using cosine similarity. retriever = qdrant.as_retriever() retriever VectorStoreRetriever(vectorstore=<langchain.vectorstores.qdrant.Qdrant object at 0x7fc4e5720a00>, search_type='similarity', search_kwargs={}) It might be also specified to use MMR as a search strategy, instead of similarity. retriever = qdrant.as_retriever(search_type="mmr") retriever VectorStoreRetriever(vectorstore=<langchain.vectorstores.qdrant.Qdrant object at 0x7fc4e5720a00>, search_type='mmr', search_kwargs={}) query = "What did the president say about Ketanji Brown Jackson" retriever.get_relevant_documents(query)[0] Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n\nTonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.', metadata={'source': '../../../state_of_the_union.txt'}) Customizing Qdrant# Qdrant stores your vector embeddings along with the optional JSON-like payload. Payloads are optional, but since LangChain assumes the embeddings are generated from the documents, we keep the context data, so you can extract the original texts as well. By default, your document is going to be stored in the following payload structure: { "page_content": "Lorem ipsum dolor sit amet", "metadata": { "foo": "bar" } } You can, however, decide to use different keys for the page content and metadata. That’s useful if you already have a collection that you’d like to reuse. You can always change the Qdrant.from_documents( docs, embeddings, location=":memory:", collection_name="my_documents_2", content_payload_key="my_page_content_key", metadata_payload_key="my_meta", ) <langchain.vectorstores.qdrant.Qdrant at 0x7fc4e2baa230> previous Pinecone next Redis Contents Connecting to Qdrant from LangChain Local mode In-memory On-disk storage On-premise server deployment Qdrant Cloud Reusing the same collection Similarity search Similarity search with score Metadata filtering Maximum marginal relevance search (MMR) Qdrant as a Retriever Customizing Qdrant By Harrison Chase © Copyright 2023, Harrison Chase.
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/qdrant.html
8b1c5da89410-3
By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/qdrant.html
4ddc6c7b09e5-0
.ipynb .pdf MyScale Contents Setting up envrionments Get connection info and data schema Filtering Similarity search with score Deleting your data MyScale# MyScale is a cloud-based database optimized for AI applications and solutions, built on the open-source ClickHouse. This notebook shows how to use functionality related to the MyScale vector database. Setting up envrionments# !pip install clickhouse-connect We want to use OpenAIEmbeddings so we have to get the OpenAI API Key. import os import getpass os.environ['OPENAI_API_KEY'] = getpass.getpass('OpenAI API Key:') There are two ways to set up parameters for myscale index. Environment Variables Before you run the app, please set the environment variable with export: export MYSCALE_URL='<your-endpoints-url>' MYSCALE_PORT=<your-endpoints-port> MYSCALE_USERNAME=<your-username> MYSCALE_PASSWORD=<your-password> ... You can easily find your account, password and other info on our SaaS. For details please refer to this document Every attributes under MyScaleSettings can be set with prefix MYSCALE_ and is case insensitive. Create MyScaleSettings object with parameters from langchain.vectorstores import MyScale, MyScaleSettings config = MyScaleSetting(host="<your-backend-url>", port=8443, ...) index = MyScale(embedding_function, config) index.add_documents(...) from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import MyScale from langchain.document_loaders import TextLoader from langchain.document_loaders import TextLoader loader = TextLoader('../../../state_of_the_union.txt') documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() for d in docs: d.metadata = {'some': 'metadata'} docsearch = MyScale.from_documents(docs, embeddings) query = "What did the president say about Ketanji Brown Jackson" docs = docsearch.similarity_search(query) Inserting data...: 100%|██████████| 42/42 [00:18<00:00, 2.21it/s] print(docs[0].page_content) As Frances Haugen, who is here with us tonight, has shown, we must hold social media platforms accountable for the national experiment they’re conducting on our children for profit. It’s time to strengthen privacy protections, ban targeted advertising to children, demand tech companies stop collecting personal data on our children. And let’s get all Americans the mental health services they need. More people they can turn to for help, and full parity between physical and mental health care. Third, support our veterans. Veterans are the best of us. I’ve always believed that we have a sacred obligation to equip all those we send to war and care for them and their families when they come home. My administration is providing assistance with job training and housing, and now helping lower-income veterans get VA care debt-free. Our troops in Iraq and Afghanistan faced many dangers. Get connection info and data schema# print(str(docsearch)) Filtering# You can have direct access to myscale SQL where statement. You can write WHERE clause following standard SQL. NOTE: Please be aware of SQL injection, this interface must not be directly called by end-user. If you custimized your column_map under your setting, you search with filter like this: from langchain.vectorstores import MyScale, MyScaleSettings from langchain.document_loaders import TextLoader loader = TextLoader('../../../state_of_the_union.txt') documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() for i, d in enumerate(docs): d.metadata = {'doc_id': i} docsearch = MyScale.from_documents(docs, embeddings) Inserting data...: 100%|██████████| 42/42 [00:15<00:00, 2.69it/s] Similarity search with score# The returned distance score is cosine distance. Therefore, a lower score is better. meta = docsearch.metadata_column output = docsearch.similarity_search_with_relevance_scores('What did the president say about Ketanji Brown Jackson?',
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/myscale.html
4ddc6c7b09e5-1
k=4, where_str=f"{meta}.doc_id<10") for d, dist in output: print(dist, d.metadata, d.page_content[:20] + '...') 0.252379834651947 {'doc_id': 6, 'some': ''} And I’m taking robus... 0.25022566318511963 {'doc_id': 1, 'some': ''} Groups of citizens b... 0.2469480037689209 {'doc_id': 8, 'some': ''} And so many families... 0.2428302764892578 {'doc_id': 0, 'some': 'metadata'} As Frances Haugen, w... Deleting your data# docsearch.drop() previous Commented out until further notice next OpenSearch Contents Setting up envrionments Get connection info and data schema Filtering Similarity search with score Deleting your data By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/myscale.html
76b03b40d8e3-0
.ipynb .pdf SKLearnVectorStore Contents Basic usage Load a sample document corpus Create the SKLearnVectorStore, index the document corpus and run a sample query Saving and loading a vector store Clean-up SKLearnVectorStore# scikit-learn is an open source collection of machine learning algorithms, including some implementations of the k nearest neighbors. SKLearnVectorStore wraps this implementation and adds the possibility to persist the vector store in json, bson (binary json) or Apache Parquet format. This notebook shows how to use the SKLearnVectorStore vector database. %pip install scikit-learn # # if you plan to use bson serialization, install also: # %pip install bson # # if you plan to use parquet serialization, install also: %pip install pandas pyarrow To use OpenAI embeddings, you will need an OpenAI key. You can get one at https://platform.openai.com/account/api-keys or feel free to use any other embeddings. import os from getpass import getpass os.environ['OPENAI_API_KEY'] = getpass('Enter your OpenAI key:') Basic usage# Load a sample document corpus# from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import SKLearnVectorStore from langchain.document_loaders import TextLoader loader = TextLoader('../../../state_of_the_union.txt') documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() Create the SKLearnVectorStore, index the document corpus and run a sample query# import tempfile persist_path = os.path.join(tempfile.gettempdir(), 'union.parquet') vector_store = SKLearnVectorStore.from_documents( documents=docs, embedding=embeddings, persist_path=persist_path, # persist_path and serializer are optional serializer='parquet' ) query = "What did the president say about Ketanji Brown Jackson" docs = vector_store.similarity_search(query) print(docs[0].page_content) Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence. Saving and loading a vector store# vector_store.persist() print('Vector store was persisted to', persist_path) Vector store was persisted to /var/folders/6r/wc15p6m13nl_nl_n_xfqpc5c0000gp/T/union.parquet vector_store2 = SKLearnVectorStore( embedding=embeddings, persist_path=persist_path, serializer='parquet' ) print('A new instance of vector store was loaded from', persist_path) A new instance of vector store was loaded from /var/folders/6r/wc15p6m13nl_nl_n_xfqpc5c0000gp/T/union.parquet docs = vector_store2.similarity_search(query) print(docs[0].page_content) Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence. Clean-up#
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/sklearn.html
76b03b40d8e3-1
Clean-up# os.remove(persist_path) previous SingleStoreDB vector search next Supabase (Postgres) Contents Basic usage Load a sample document corpus Create the SKLearnVectorStore, index the document corpus and run a sample query Saving and loading a vector store Clean-up By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/sklearn.html
e07c96f65d0e-0
.ipynb .pdf DocArrayHnswSearch Contents Setup Using DocArrayHnswSearch Similarity search Similarity search with score DocArrayHnswSearch# DocArrayHnswSearch is a lightweight Document Index implementation provided by Docarray that runs fully locally and is best suited for small- to medium-sized datasets. It stores vectors on disk in hnswlib, and stores all other data in SQLite. This notebook shows how to use functionality related to the DocArrayHnswSearch. Setup# Uncomment the below cells to install docarray and get/set your OpenAI api key if you haven’t already done so. # !pip install "docarray[hnswlib]" # Get an OpenAI token: https://platform.openai.com/account/api-keys # import os # from getpass import getpass # OPENAI_API_KEY = getpass() # os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY Using DocArrayHnswSearch# from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import DocArrayHnswSearch from langchain.document_loaders import TextLoader documents = TextLoader('../../../state_of_the_union.txt').load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() db = DocArrayHnswSearch.from_documents(docs, embeddings, work_dir='hnswlib_store/', n_dim=1536) Similarity search# query = "What did the president say about Ketanji Brown Jackson" docs = db.similarity_search(query) print(docs[0].page_content) Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence. Similarity search with score# The returned distance score is cosine distance. Therefore, a lower score is better. docs = db.similarity_search_with_score(query) docs[0] (Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n\nTonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.', metadata={}), 0.36962226) import shutil # delete the dir shutil.rmtree('hnswlib_store') previous Deep Lake next DocArrayInMemorySearch Contents Setup Using DocArrayHnswSearch Similarity search Similarity search with score By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/docarray_hnsw.html
b8483673a15f-0
.ipynb .pdf Tigris Contents Initialize Tigris vector store Similarity Search Similarity Search with score (vector distance) Tigris# Tigris is an open source Serverless NoSQL Database and Search Platform designed to simplify building high-performance vector search applications. Tigris eliminates the infrastructure complexity of managing, operating, and synchronizing multiple tools, allowing you to focus on building great applications instead. This notebook guides you how to use Tigris as your VectorStore Pre requisites An OpenAI account. You can sign up for an account here Sign up for a free Tigris account. Once you have signed up for the Tigris account, create a new project called vectordemo. Next, make a note of the Uri for the region you’ve created your project in, the clientId and clientSecret. You can get all this information from the Application Keys section of the project. Let’s first install our dependencies: !pip install tigrisdb openapi-schema-pydantic openai tiktoken We will load the OpenAI api key and Tigris credentials in our environment import os import getpass os.environ['OPENAI_API_KEY'] = getpass.getpass('OpenAI API Key:') os.environ['TIGRIS_PROJECT'] = getpass.getpass('Tigris Project Name:') os.environ['TIGRIS_CLIENT_ID'] = getpass.getpass('Tigris Client Id:') os.environ['TIGRIS_CLIENT_SECRET'] = getpass.getpass('Tigris Client Secret:') from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import Tigris from langchain.document_loaders import TextLoader Initialize Tigris vector store# Let’s import our test dataset: loader = TextLoader('../../../state_of_the_union.txt') documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() vector_store = Tigris.from_documents(docs, embeddings, index_name="my_embeddings") Similarity Search# query = "What did the president say about Ketanji Brown Jackson" found_docs = vector_store.similarity_search(query) print(found_docs) Similarity Search with score (vector distance)# query = "What did the president say about Ketanji Brown Jackson" result = vector_store.similarity_search_with_score(query) for (doc, score) in result: print(f"document={doc}, score={score}") previous Tair next Typesense Contents Initialize Tigris vector store Similarity Search Similarity Search with score (vector distance) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/tigris.html
faaf549b807d-0
.ipynb .pdf DocArrayInMemorySearch Contents Setup Using DocArrayInMemorySearch Similarity search Similarity search with score DocArrayInMemorySearch# DocArrayInMemorySearch is a document index provided by Docarray that stores documents in memory. It is a great starting point for small datasets, where you may not want to launch a database server. This notebook shows how to use functionality related to the DocArrayInMemorySearch. Setup# Uncomment the below cells to install docarray and get/set your OpenAI api key if you haven’t already done so. # !pip install "docarray" # Get an OpenAI token: https://platform.openai.com/account/api-keys # import os # from getpass import getpass # OPENAI_API_KEY = getpass() # os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY Using DocArrayInMemorySearch# from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import DocArrayInMemorySearch from langchain.document_loaders import TextLoader documents = TextLoader('../../../state_of_the_union.txt').load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() db = DocArrayInMemorySearch.from_documents(docs, embeddings) Similarity search# query = "What did the president say about Ketanji Brown Jackson" docs = db.similarity_search(query) print(docs[0].page_content) Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence. Similarity search with score# The returned distance score is cosine distance. Therefore, a lower score is better. docs = db.similarity_search_with_score(query) docs[0] (Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n\nTonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.', metadata={}), 0.8154190158347903) previous DocArrayHnswSearch next ElasticSearch Contents Setup Using DocArrayInMemorySearch Similarity search Similarity search with score By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/docarray_in_memory.html
e05b847b07d0-0
.ipynb .pdf Annoy Contents Create VectorStore from texts Create VectorStore from docs Create VectorStore via existing embeddings Search via embeddings Search via docstore id Save and load Construct from scratch Annoy# Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given query point. It also creates large read-only file-based data structures that are mmapped into memory so that many processes may share the same data. This notebook shows how to use functionality related to the Annoy vector database. Note NOTE: Annoy is read-only - once the index is built you cannot add any more emebddings! If you want to progressively add new entries to your VectorStore then better choose an alternative! #!pip install annoy Create VectorStore from texts# from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import Annoy embeddings_func = HuggingFaceEmbeddings() texts = ["pizza is great", "I love salad", "my car", "a dog"] # default metric is angular vector_store = Annoy.from_texts(texts, embeddings_func) # allows for custom annoy parameters, defaults are n_trees=100, n_jobs=-1, metric="angular" vector_store_v2 = Annoy.from_texts( texts, embeddings_func, metric="dot", n_trees=100, n_jobs=1 ) vector_store.similarity_search("food", k=3) [Document(page_content='pizza is great', metadata={}), Document(page_content='I love salad', metadata={}), Document(page_content='my car', metadata={})] # the score is a distance metric, so lower is better vector_store.similarity_search_with_score("food", k=3) [(Document(page_content='pizza is great', metadata={}), 1.0944390296936035), (Document(page_content='I love salad', metadata={}), 1.1273186206817627), (Document(page_content='my car', metadata={}), 1.1580758094787598)] Create VectorStore from docs# from langchain.document_loaders import TextLoader from langchain.text_splitter import CharacterTextSplitter loader = TextLoader("../../../state_of_the_union.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) docs[:5] [Document(page_content='Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans. \n\nLast year COVID-19 kept us apart. This year we are finally together again. \n\nTonight, we meet as Democrats Republicans and Independents. But most importantly as Americans. \n\nWith a duty to one another to the American people to the Constitution. \n\nAnd with an unwavering resolve that freedom will always triumph over tyranny. \n\nSix days ago, Russia’s Vladimir Putin sought to shake the foundations of the free world thinking he could make it bend to his menacing ways. But he badly miscalculated. \n\nHe thought he could roll into Ukraine and the world would roll over. Instead he met a wall of strength he never imagined. \n\nHe met the Ukrainian people. \n\nFrom President Zelenskyy to every Ukrainian, their fearlessness, their courage, their determination, inspires the world.', metadata={'source': '../../../state_of_the_union.txt'}),
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/annoy.html
e05b847b07d0-1
Document(page_content='Groups of citizens blocking tanks with their bodies. Everyone from students to retirees teachers turned soldiers defending their homeland. \n\nIn this struggle as President Zelenskyy said in his speech to the European Parliament “Light will win over darkness.” The Ukrainian Ambassador to the United States is here tonight. \n\nLet each of us here tonight in this Chamber send an unmistakable signal to Ukraine and to the world. \n\nPlease rise if you are able and show that, Yes, we the United States of America stand with the Ukrainian people. \n\nThroughout our history we’ve learned this lesson when dictators do not pay a price for their aggression they cause more chaos. \n\nThey keep moving. \n\nAnd the costs and the threats to America and the world keep rising. \n\nThat’s why the NATO Alliance was created to secure peace and stability in Europe after World War 2. \n\nThe United States is a member along with 29 other nations. \n\nIt matters. American diplomacy matters. American resolve matters.', metadata={'source': '../../../state_of_the_union.txt'}), Document(page_content='Putin’s latest attack on Ukraine was premeditated and unprovoked. \n\nHe rejected repeated efforts at diplomacy. \n\nHe thought the West and NATO wouldn’t respond. And he thought he could divide us at home. Putin was wrong. We were ready. Here is what we did. \n\nWe prepared extensively and carefully. \n\nWe spent months building a coalition of other freedom-loving nations from Europe and the Americas to Asia and Africa to confront Putin. \n\nI spent countless hours unifying our European allies. We shared with the world in advance what we knew Putin was planning and precisely how he would try to falsely justify his aggression. \n\nWe countered Russia’s lies with truth. \n\nAnd now that he has acted the free world is holding him accountable. \n\nAlong with twenty-seven members of the European Union including France, Germany, Italy, as well as countries like the United Kingdom, Canada, Japan, Korea, Australia, New Zealand, and many others, even Switzerland.', metadata={'source': '../../../state_of_the_union.txt'}), Document(page_content='We are inflicting pain on Russia and supporting the people of Ukraine. Putin is now isolated from the world more than ever. \n\nTogether with our allies –we are right now enforcing powerful economic sanctions. \n\nWe are cutting off Russia’s largest banks from the international financial system. \n\nPreventing Russia’s central bank from defending the Russian Ruble making Putin’s $630 Billion “war fund” worthless. \n\nWe are choking off Russia’s access to technology that will sap its economic strength and weaken its military for years to come. \n\nTonight I say to the Russian oligarchs and corrupt leaders who have bilked billions of dollars off this violent regime no more. \n\nThe U.S. Department of Justice is assembling a dedicated task force to go after the crimes of Russian oligarchs. \n\nWe are joining with our European allies to find and seize your yachts your luxury apartments your private jets. We are coming for your ill-begotten gains.', metadata={'source': '../../../state_of_the_union.txt'}), Document(page_content='And tonight I am announcing that we will join our allies in closing off American air space to all Russian flights – further isolating Russia – and adding an additional squeeze –on their economy. The Ruble has lost 30% of its value. \n\nThe Russian stock market has lost 40% of its value and trading remains suspended. Russia’s economy is reeling and Putin alone is to blame. \n\nTogether with our allies we are providing support to the Ukrainians in their fight for freedom. Military assistance. Economic assistance. Humanitarian assistance. \n\nWe are giving more than $1 Billion in direct assistance to Ukraine. \n\nAnd we will continue to aid the Ukrainian people as they defend their country and to help ease their suffering. \n\nLet me be clear, our forces are not engaged and will not engage in conflict with Russian forces in Ukraine. \n\nOur forces are not going to Europe to fight in Ukraine, but to defend our NATO Allies – in the event that Putin decides to keep moving west.', metadata={'source': '../../../state_of_the_union.txt'})] vector_store_from_docs = Annoy.from_documents(docs, embeddings_func) query = "What did the president say about Ketanji Brown Jackson" docs = vector_store_from_docs.similarity_search(query) print(docs[0].page_content[:100]) Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Ac
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/annoy.html
e05b847b07d0-2
Create VectorStore via existing embeddings# embs = embeddings_func.embed_documents(texts) data = list(zip(texts, embs)) vector_store_from_embeddings = Annoy.from_embeddings(data, embeddings_func) vector_store_from_embeddings.similarity_search_with_score("food", k=3) [(Document(page_content='pizza is great', metadata={}), 1.0944390296936035), (Document(page_content='I love salad', metadata={}), 1.1273186206817627), (Document(page_content='my car', metadata={}), 1.1580758094787598)] Search via embeddings# motorbike_emb = embeddings_func.embed_query("motorbike") vector_store.similarity_search_by_vector(motorbike_emb, k=3) [Document(page_content='my car', metadata={}), Document(page_content='a dog', metadata={}), Document(page_content='pizza is great', metadata={})] vector_store.similarity_search_with_score_by_vector(motorbike_emb, k=3) [(Document(page_content='my car', metadata={}), 1.0870471000671387), (Document(page_content='a dog', metadata={}), 1.2095637321472168), (Document(page_content='pizza is great', metadata={}), 1.3254905939102173)] Search via docstore id# vector_store.index_to_docstore_id {0: '2d1498a8-a37c-4798-acb9-0016504ed798', 1: '2d30aecc-88e0-4469-9d51-0ef7e9858e6d', 2: '927f1120-985b-4691-b577-ad5cb42e011c', 3: '3056ddcf-a62f-48c8-bd98-b9e57a3dfcae'} some_docstore_id = 0 # texts[0] vector_store.docstore._dict[vector_store.index_to_docstore_id[some_docstore_id]] Document(page_content='pizza is great', metadata={}) # same document has distance 0 vector_store.similarity_search_with_score_by_index(some_docstore_id, k=3) [(Document(page_content='pizza is great', metadata={}), 0.0), (Document(page_content='I love salad', metadata={}), 1.0734446048736572), (Document(page_content='my car', metadata={}), 1.2895267009735107)] Save and load# vector_store.save_local("my_annoy_index_and_docstore") saving config loaded_vector_store = Annoy.load_local( "my_annoy_index_and_docstore", embeddings=embeddings_func ) # same document has distance 0 loaded_vector_store.similarity_search_with_score_by_index(some_docstore_id, k=3) [(Document(page_content='pizza is great', metadata={}), 0.0), (Document(page_content='I love salad', metadata={}), 1.0734446048736572), (Document(page_content='my car', metadata={}), 1.2895267009735107)] Construct from scratch# import uuid from annoy import AnnoyIndex from langchain.docstore.document import Document from langchain.docstore.in_memory import InMemoryDocstore metadatas = [{"x": "food"}, {"x": "food"}, {"x": "stuff"}, {"x": "animal"}] # embeddings embeddings = embeddings_func.embed_documents(texts) # embedding dim f = len(embeddings[0]) # index metric = "angular" index = AnnoyIndex(f, metric=metric) for i, emb in enumerate(embeddings): index.add_item(i, emb) index.build(10) # docstore documents = [] for i, text in enumerate(texts): metadata = metadatas[i] if metadatas else {} documents.append(Document(page_content=text, metadata=metadata)) index_to_docstore_id = {i: str(uuid.uuid4()) for i in range(len(documents))} docstore = InMemoryDocstore( {index_to_docstore_id[i]: doc for i, doc in enumerate(documents)} ) db_manually = Annoy( embeddings_func.embed_query, index, metric, docstore, index_to_docstore_id ) db_manually.similarity_search_with_score("eating!", k=3)
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/annoy.html
e05b847b07d0-3
) db_manually.similarity_search_with_score("eating!", k=3) [(Document(page_content='pizza is great', metadata={'x': 'food'}), 1.1314140558242798), (Document(page_content='I love salad', metadata={'x': 'food'}), 1.1668788194656372), (Document(page_content='my car', metadata={'x': 'stuff'}), 1.226445198059082)] previous AnalyticDB next Atlas Contents Create VectorStore from texts Create VectorStore from docs Create VectorStore via existing embeddings Search via embeddings Search via docstore id Save and load Construct from scratch By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/annoy.html
27e4ea9f2ce5-0
.ipynb .pdf PGVector Contents Similarity search with score Similarity Search with Euclidean Distance (Default) Working with vectorstore in PG Uploading a vectorstore in PG Retrieving a vectorstore in PG PGVector# PGVector is an open-source vector similarity search for Postgres It supports: exact and approximate nearest neighbor search L2 distance, inner product, and cosine distance This notebook shows how to use the Postgres vector database (PGVector). See the installation instruction. # Pip install necessary package !pip install pgvector !pip install openai !pip install psycopg2-binary !pip install tiktoken Requirement already satisfied: pgvector in /Users/joyeed/langchain/langchain/.venv/lib/python3.9/site-packages (0.1.8) Requirement already satisfied: numpy in /Users/joyeed/langchain/langchain/.venv/lib/python3.9/site-packages (from pgvector) (1.24.3) Requirement already satisfied: openai in /Users/joyeed/langchain/langchain/.venv/lib/python3.9/site-packages (0.27.7) Requirement already satisfied: requests>=2.20 in /Users/joyeed/langchain/langchain/.venv/lib/python3.9/site-packages (from openai) (2.28.2) Requirement already satisfied: tqdm in /Users/joyeed/langchain/langchain/.venv/lib/python3.9/site-packages (from openai) (4.65.0) Requirement already satisfied: aiohttp in /Users/joyeed/langchain/langchain/.venv/lib/python3.9/site-packages (from openai) (3.8.4) Requirement already satisfied: charset-normalizer<4,>=2 in /Users/joyeed/langchain/langchain/.venv/lib/python3.9/site-packages (from requests>=2.20->openai) (3.1.0) Requirement already satisfied: idna<4,>=2.5 in /Users/joyeed/langchain/langchain/.venv/lib/python3.9/site-packages (from requests>=2.20->openai) (3.4) Requirement already satisfied: urllib3<1.27,>=1.21.1 in /Users/joyeed/langchain/langchain/.venv/lib/python3.9/site-packages (from requests>=2.20->openai) (1.26.15) Requirement already satisfied: certifi>=2017.4.17 in /Users/joyeed/langchain/langchain/.venv/lib/python3.9/site-packages (from requests>=2.20->openai) (2023.5.7) Requirement already satisfied: attrs>=17.3.0 in /Users/joyeed/langchain/langchain/.venv/lib/python3.9/site-packages (from aiohttp->openai) (23.1.0) Requirement already satisfied: multidict<7.0,>=4.5 in /Users/joyeed/langchain/langchain/.venv/lib/python3.9/site-packages (from aiohttp->openai) (6.0.4) Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /Users/joyeed/langchain/langchain/.venv/lib/python3.9/site-packages (from aiohttp->openai) (4.0.2) Requirement already satisfied: yarl<2.0,>=1.0 in /Users/joyeed/langchain/langchain/.venv/lib/python3.9/site-packages (from aiohttp->openai) (1.9.2) Requirement already satisfied: frozenlist>=1.1.1 in /Users/joyeed/langchain/langchain/.venv/lib/python3.9/site-packages (from aiohttp->openai) (1.3.3) Requirement already satisfied: aiosignal>=1.1.2 in /Users/joyeed/langchain/langchain/.venv/lib/python3.9/site-packages (from aiohttp->openai) (1.3.1) Requirement already satisfied: psycopg2-binary in /Users/joyeed/langchain/langchain/.venv/lib/python3.9/site-packages (2.9.6) Requirement already satisfied: tiktoken in /Users/joyeed/langchain/langchain/.venv/lib/python3.9/site-packages (0.4.0) Requirement already satisfied: regex>=2022.1.18 in /Users/joyeed/langchain/langchain/.venv/lib/python3.9/site-packages (from tiktoken) (2023.5.5)
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/pgvector.html
27e4ea9f2ce5-1
Requirement already satisfied: requests>=2.26.0 in /Users/joyeed/langchain/langchain/.venv/lib/python3.9/site-packages (from tiktoken) (2.28.2) Requirement already satisfied: charset-normalizer<4,>=2 in /Users/joyeed/langchain/langchain/.venv/lib/python3.9/site-packages (from requests>=2.26.0->tiktoken) (3.1.0) Requirement already satisfied: idna<4,>=2.5 in /Users/joyeed/langchain/langchain/.venv/lib/python3.9/site-packages (from requests>=2.26.0->tiktoken) (3.4) Requirement already satisfied: urllib3<1.27,>=1.21.1 in /Users/joyeed/langchain/langchain/.venv/lib/python3.9/site-packages (from requests>=2.26.0->tiktoken) (1.26.15) Requirement already satisfied: certifi>=2017.4.17 in /Users/joyeed/langchain/langchain/.venv/lib/python3.9/site-packages (from requests>=2.26.0->tiktoken) (2023.5.7) We want to use OpenAIEmbeddings so we have to get the OpenAI API Key. import os import getpass os.environ['OPENAI_API_KEY'] = getpass.getpass('OpenAI API Key:') OpenAI API Key:········ ## Loading Environment Variables from typing import List, Tuple from dotenv import load_dotenv load_dotenv() False from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores.pgvector import PGVector from langchain.document_loaders import TextLoader from langchain.docstore.document import Document loader = TextLoader('../../../state_of_the_union.txt') documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() ## PGVector needs the connection string to the database. ## We will load it from the environment variables. import os CONNECTION_STRING = PGVector.connection_string_from_db_params( driver=os.environ.get("PGVECTOR_DRIVER", "psycopg2"), host=os.environ.get("PGVECTOR_HOST", "localhost"), port=int(os.environ.get("PGVECTOR_PORT", "5432")), database=os.environ.get("PGVECTOR_DATABASE", "postgres"), user=os.environ.get("PGVECTOR_USER", "postgres"), password=os.environ.get("PGVECTOR_PASSWORD", "postgres"), ) ## Example # postgresql+psycopg2://username:password@localhost:5432/database_name # ## PGVector needs the connection string to the database. # ## We will load it from the environment variables. # import os # CONNECTION_STRING = PGVector.connection_string_from_db_params( # driver=os.environ.get("PGVECTOR_DRIVER", "psycopg2"), # host=os.environ.get("PGVECTOR_HOST", "localhost"), # port=int(os.environ.get("PGVECTOR_PORT", "5432")), # database=os.environ.get("PGVECTOR_DATABASE", "rd-embeddings"), # user=os.environ.get("PGVECTOR_USER", "admin"), # password=os.environ.get("PGVECTOR_PASSWORD", "password"), # ) # ## Example # # postgresql+psycopg2://username:password@localhost:5432/database_name Similarity search with score# Similarity Search with Euclidean Distance (Default)# # The PGVector Module will try to create a table with the name of the collection. So, make sure that the collection name is unique and the user has the # permission to create a table. db = PGVector.from_documents( embedding=embeddings, documents=docs, collection_name="state_of_the_union", connection_string=CONNECTION_STRING, ) query = "What did the president say about Ketanji Brown Jackson" docs_with_score: List[Tuple[Document, float]] = db.similarity_search_with_score(query) for doc, score in docs_with_score: print("-" * 80) print("Score: ", score) print(doc.page_content) print("-" * 80) -------------------------------------------------------------------------------- Score: 0.6076804864602984
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/pgvector.html
27e4ea9f2ce5-2
-------------------------------------------------------------------------------- Score: 0.6076804864602984 Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence. -------------------------------------------------------------------------------- -------------------------------------------------------------------------------- Score: 0.6076804864602984 Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence. -------------------------------------------------------------------------------- -------------------------------------------------------------------------------- Score: 0.659062774389974 A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since she’s been nominated, she’s received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. And if we are to advance liberty and justice, we need to secure the Border and fix the immigration system. We can do both. At our border, we’ve installed new technology like cutting-edge scanners to better detect drug smuggling. We’ve set up joint patrols with Mexico and Guatemala to catch more human traffickers. We’re putting in place dedicated immigration judges so families fleeing persecution and violence can have their cases heard faster. We’re securing commitments and supporting partners in South and Central America to host more refugees and secure their own borders. -------------------------------------------------------------------------------- -------------------------------------------------------------------------------- Score: 0.659062774389974 A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since she’s been nominated, she’s received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. And if we are to advance liberty and justice, we need to secure the Border and fix the immigration system. We can do both. At our border, we’ve installed new technology like cutting-edge scanners to better detect drug smuggling. We’ve set up joint patrols with Mexico and Guatemala to catch more human traffickers. We’re putting in place dedicated immigration judges so families fleeing persecution and violence can have their cases heard faster. We’re securing commitments and supporting partners in South and Central America to host more refugees and secure their own borders. -------------------------------------------------------------------------------- Working with vectorstore in PG# Uploading a vectorstore in PG# data=docs api_key=os.environ['OPENAI_API_KEY'] db = PGVector.from_documents( documents=docs, embedding=embeddings, collection_name=collection_name, connection_string=connection_string, distance_strategy=DistanceStrategy.COSINE, openai_api_key=api_key, pre_delete_collection=False ) Retrieving a vectorstore in PG# connection_string = CONNECTION_STRING embedding=embeddings collection_name="state_of_the_union" from langchain.vectorstores.pgvector import DistanceStrategy store = PGVector( connection_string=connection_string, embedding_function=embedding, collection_name=collection_name, distance_strategy=DistanceStrategy.COSINE ) retriever = store.as_retriever() print(retriever)
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/pgvector.html
27e4ea9f2ce5-3
) retriever = store.as_retriever() print(retriever) vectorstore=<langchain.vectorstores.pgvector.PGVector object at 0x7fe9a1b1c670> search_type='similarity' search_kwargs={} # When we have an existing PG VEctor DEFAULT_DISTANCE_STRATEGY = DistanceStrategy.EUCLIDEAN db1 = PGVector.from_existing_index( embedding=embeddings, collection_name="state_of_the_union", distance_strategy=DEFAULT_DISTANCE_STRATEGY, pre_delete_collection = False, connection_string=CONNECTION_STRING, ) query = "What did the president say about Ketanji Brown Jackson" docs_with_score: List[Tuple[Document, float]] = db1.similarity_search_with_score(query) print(docs_with_score)
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/pgvector.html
27e4ea9f2ce5-4
print(docs_with_score) [(Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n\nTonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.', metadata={'source': '../../../state_of_the_union.txt'}), 0.6075870262188066), (Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n\nTonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.', metadata={'source': '../../../state_of_the_union.txt'}), 0.6075870262188066), (Document(page_content='A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since she’s been nominated, she’s received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. \n\nAnd if we are to advance liberty and justice, we need to secure the Border and fix the immigration system. \n\nWe can do both. At our border, we’ve installed new technology like cutting-edge scanners to better detect drug smuggling. \n\nWe’ve set up joint patrols with Mexico and Guatemala to catch more human traffickers. \n\nWe’re putting in place dedicated immigration judges so families fleeing persecution and violence can have their cases heard faster. \n\nWe’re securing commitments and supporting partners in South and Central America to host more refugees and secure their own borders.', metadata={'source': '../../../state_of_the_union.txt'}), 0.6589478388546668), (Document(page_content='A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since she’s been nominated, she’s received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. \n\nAnd if we are to advance liberty and justice, we need to secure the Border and fix the immigration system. \n\nWe can do both. At our border, we’ve installed new technology like cutting-edge scanners to better detect drug smuggling. \n\nWe’ve set up joint patrols with Mexico and Guatemala to catch more human traffickers. \n\nWe’re putting in place dedicated immigration judges so families fleeing persecution and violence can have their cases heard faster. \n\nWe’re securing commitments and supporting partners in South and Central America to host more refugees and secure their own borders.', metadata={'source': '../../../state_of_the_union.txt'}), 0.6589478388546668)] for doc, score in docs_with_score: print("-" * 80) print("Score: ", score) print(doc.page_content) print("-" * 80) -------------------------------------------------------------------------------- Score: 0.6075870262188066 Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service.
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/pgvector.html
27e4ea9f2ce5-5
One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence. -------------------------------------------------------------------------------- -------------------------------------------------------------------------------- Score: 0.6075870262188066 Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence. -------------------------------------------------------------------------------- -------------------------------------------------------------------------------- Score: 0.6589478388546668 A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since she’s been nominated, she’s received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. And if we are to advance liberty and justice, we need to secure the Border and fix the immigration system. We can do both. At our border, we’ve installed new technology like cutting-edge scanners to better detect drug smuggling. We’ve set up joint patrols with Mexico and Guatemala to catch more human traffickers. We’re putting in place dedicated immigration judges so families fleeing persecution and violence can have their cases heard faster. We’re securing commitments and supporting partners in South and Central America to host more refugees and secure their own borders. -------------------------------------------------------------------------------- -------------------------------------------------------------------------------- Score: 0.6589478388546668 A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since she’s been nominated, she’s received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. And if we are to advance liberty and justice, we need to secure the Border and fix the immigration system. We can do both. At our border, we’ve installed new technology like cutting-edge scanners to better detect drug smuggling. We’ve set up joint patrols with Mexico and Guatemala to catch more human traffickers. We’re putting in place dedicated immigration judges so families fleeing persecution and violence can have their cases heard faster. We’re securing commitments and supporting partners in South and Central America to host more refugees and secure their own borders. -------------------------------------------------------------------------------- previous OpenSearch next Pinecone Contents Similarity search with score Similarity Search with Euclidean Distance (Default) Working with vectorstore in PG Uploading a vectorstore in PG Retrieving a vectorstore in PG By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/pgvector.html
0c8d9ded5f65-0
.ipynb .pdf Deep Lake Contents Retrieval Question/Answering Attribute based filtering in metadata Choosing distance function Maximal Marginal relevance Delete dataset Deep Lake datasets on cloud (Activeloop, AWS, GCS, etc.) or in memory Creating dataset on AWS S3 Deep Lake API Transfer local dataset to cloud Deep Lake# Deep Lake as a Multi-Modal Vector Store that stores embeddings and their metadata including text, jsons, images, audio, video, and more. It saves the data locally, in your cloud, or on Activeloop storage. It performs hybrid search including embeddings and their attributes. This notebook showcases basic functionality related to Deep Lake. While Deep Lake can store embeddings, it is capable of storing any type of data. It is a fully fledged serverless data lake with version control, query engine and streaming dataloader to deep learning frameworks. For more information, please see the Deep Lake documentation or api reference !pip install openai deeplake tiktoken from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import DeepLake import os import getpass os.environ['OPENAI_API_KEY'] = getpass.getpass('OpenAI API Key:') embeddings = OpenAIEmbeddings() from langchain.document_loaders import TextLoader loader = TextLoader('../../../state_of_the_union.txt') documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() Create a dataset locally at ./deeplake/, then run similiarity search. The Deeplake+LangChain integration uses Deep Lake datasets under the hood, so dataset and vector store are used interchangeably. To create a dataset in your own cloud, or in the Deep Lake storage, adjust the path accordingly. db = DeepLake(dataset_path="./my_deeplake/", embedding_function=embeddings) db.add_documents(docs) # or shorter # db = DeepLake.from_documents(docs, dataset_path="./my_deeplake/", embedding=embeddings, overwrite=True) query = "What did the president say about Ketanji Brown Jackson" docs = db.similarity_search(query) /home/leo/.local/lib/python3.10/site-packages/deeplake/util/check_latest_version.py:32: UserWarning: A newer version of deeplake (3.3.2) is available. It's recommended that you update to the latest version using `pip install -U deeplake`. warnings.warn( ./my_deeplake/ loaded successfully. Evaluating ingest: 100%|██████████████████████████████████████| 1/1 [00:07<00:00 Dataset(path='./my_deeplake/', tensors=['embedding', 'ids', 'metadata', 'text']) tensor htype shape dtype compression ------- ------- ------- ------- ------- embedding generic (42, 1536) float32 None ids text (42, 1) str None metadata json (42, 1) str None text text (42, 1) str None print(docs[0].page_content) Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence. Later, you can reload the dataset without recomputing embeddings db = DeepLake(dataset_path="./my_deeplake/", embedding_function=embeddings, read_only=True) docs = db.similarity_search(query) ./my_deeplake/ loaded successfully. Deep Lake Dataset in ./my_deeplake/ already exists, loading from the storage
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/deeplake.html
0c8d9ded5f65-1
Deep Lake Dataset in ./my_deeplake/ already exists, loading from the storage Dataset(path='./my_deeplake/', read_only=True, tensors=['embedding', 'ids', 'metadata', 'text']) tensor htype shape dtype compression ------- ------- ------- ------- ------- embedding generic (42, 1536) float32 None ids text (42, 1) str None metadata json (42, 1) str None text text (42, 1) str None Deep Lake, for now, is single writer and multiple reader. Setting read_only=True helps to avoid acquring the writer lock. Retrieval Question/Answering# from langchain.chains import RetrievalQA from langchain.llms import OpenAIChat qa = RetrievalQA.from_chain_type(llm=OpenAIChat(model='gpt-3.5-turbo'), chain_type='stuff', retriever=db.as_retriever()) /home/leo/.local/lib/python3.10/site-packages/langchain/llms/openai.py:624: UserWarning: You are trying to use a chat model. This way of initializing it is no longer supported. Instead, please use: `from langchain.chat_models import ChatOpenAI` warnings.warn( query = 'What did the president say about Ketanji Brown Jackson' qa.run(query) 'The president nominated Ketanji Brown Jackson to serve on the United States Supreme Court. He described her as a former top litigator in private practice, a former federal public defender, a consensus builder, and from a family of public school educators and police officers. He also mentioned that she has received broad support from various groups since being nominated.' Attribute based filtering in metadata# import random for d in docs: d.metadata['year'] = random.randint(2012, 2014) db = DeepLake.from_documents(docs, embeddings, dataset_path="./my_deeplake/", overwrite=True) ./my_deeplake/ loaded successfully. Evaluating ingest: 100%|██████████| 1/1 [00:04<00:00 Dataset(path='./my_deeplake/', tensors=['embedding', 'ids', 'metadata', 'text']) tensor htype shape dtype compression ------- ------- ------- ------- ------- embedding generic (4, 1536) float32 None ids text (4, 1) str None metadata json (4, 1) str None text text (4, 1) str None db.similarity_search('What did the president say about Ketanji Brown Jackson', filter={'year': 2013}) 100%|██████████| 4/4 [00:00<00:00, 1080.24it/s] [Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n\nTonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.', metadata={'source': '../../../state_of_the_union.txt', 'year': 2013}),
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/deeplake.html
0c8d9ded5f65-2
Document(page_content='And for our LGBTQ+ Americans, let’s finally get the bipartisan Equality Act to my desk. The onslaught of state laws targeting transgender Americans and their families is wrong. \n\nAs I said last year, especially to our younger transgender Americans, I will always have your back as your President, so you can be yourself and reach your God-given potential. \n\nWhile it often appears that we never agree, that isn’t true. I signed 80 bipartisan bills into law last year. From preventing government shutdowns to protecting Asian-Americans from still-too-common hate crimes to reforming military justice. \n\nAnd soon, we’ll strengthen the Violence Against Women Act that I first wrote three decades ago. It is important for us to show the nation that we can come together and do big things. \n\nSo tonight I’m offering a Unity Agenda for the Nation. Four big things we can do together. \n\nFirst, beat the opioid epidemic.', metadata={'source': '../../../state_of_the_union.txt', 'year': 2013})] Choosing distance function# Distance function L2 for Euclidean, L1 for Nuclear, Max l-infinity distnace, cos for cosine similarity, dot for dot product db.similarity_search('What did the president say about Ketanji Brown Jackson?', distance_metric='cos') [Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n\nTonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.', metadata={'source': '../../../state_of_the_union.txt', 'year': 2013}), Document(page_content='A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since she’s been nominated, she’s received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. \n\nAnd if we are to advance liberty and justice, we need to secure the Border and fix the immigration system. \n\nWe can do both. At our border, we’ve installed new technology like cutting-edge scanners to better detect drug smuggling. \n\nWe’ve set up joint patrols with Mexico and Guatemala to catch more human traffickers. \n\nWe’re putting in place dedicated immigration judges so families fleeing persecution and violence can have their cases heard faster. \n\nWe’re securing commitments and supporting partners in South and Central America to host more refugees and secure their own borders.', metadata={'source': '../../../state_of_the_union.txt', 'year': 2012}), Document(page_content='And for our LGBTQ+ Americans, let’s finally get the bipartisan Equality Act to my desk. The onslaught of state laws targeting transgender Americans and their families is wrong. \n\nAs I said last year, especially to our younger transgender Americans, I will always have your back as your President, so you can be yourself and reach your God-given potential. \n\nWhile it often appears that we never agree, that isn’t true. I signed 80 bipartisan bills into law last year. From preventing government shutdowns to protecting Asian-Americans from still-too-common hate crimes to reforming military justice. \n\nAnd soon, we’ll strengthen the Violence Against Women Act that I first wrote three decades ago. It is important for us to show the nation that we can come together and do big things. \n\nSo tonight I’m offering a Unity Agenda for the Nation. Four big things we can do together. \n\nFirst, beat the opioid epidemic.', metadata={'source': '../../../state_of_the_union.txt', 'year': 2013}),
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/deeplake.html
0c8d9ded5f65-3
Document(page_content='Tonight, I’m announcing a crackdown on these companies overcharging American businesses and consumers. \n\nAnd as Wall Street firms take over more nursing homes, quality in those homes has gone down and costs have gone up. \n\nThat ends on my watch. \n\nMedicare is going to set higher standards for nursing homes and make sure your loved ones get the care they deserve and expect. \n\nWe’ll also cut costs and keep the economy going strong by giving workers a fair shot, provide more training and apprenticeships, hire them based on their skills not degrees. \n\nLet’s pass the Paycheck Fairness Act and paid leave. \n\nRaise the minimum wage to $15 an hour and extend the Child Tax Credit, so no one has to raise a family in poverty. \n\nLet’s increase Pell Grants and increase our historic support of HBCUs, and invest in what Jill—our First Lady who teaches full-time—calls America’s best-kept secret: community colleges.', metadata={'source': '../../../state_of_the_union.txt', 'year': 2012})] Maximal Marginal relevance# Using maximal marginal relevance db.max_marginal_relevance_search('What did the president say about Ketanji Brown Jackson?') [Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n\nTonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.', metadata={'source': '../../../state_of_the_union.txt', 'year': 2013}), Document(page_content='Tonight, I’m announcing a crackdown on these companies overcharging American businesses and consumers. \n\nAnd as Wall Street firms take over more nursing homes, quality in those homes has gone down and costs have gone up. \n\nThat ends on my watch. \n\nMedicare is going to set higher standards for nursing homes and make sure your loved ones get the care they deserve and expect. \n\nWe’ll also cut costs and keep the economy going strong by giving workers a fair shot, provide more training and apprenticeships, hire them based on their skills not degrees. \n\nLet’s pass the Paycheck Fairness Act and paid leave. \n\nRaise the minimum wage to $15 an hour and extend the Child Tax Credit, so no one has to raise a family in poverty. \n\nLet’s increase Pell Grants and increase our historic support of HBCUs, and invest in what Jill—our First Lady who teaches full-time—calls America’s best-kept secret: community colleges.', metadata={'source': '../../../state_of_the_union.txt', 'year': 2012}), Document(page_content='A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since she’s been nominated, she’s received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. \n\nAnd if we are to advance liberty and justice, we need to secure the Border and fix the immigration system. \n\nWe can do both. At our border, we’ve installed new technology like cutting-edge scanners to better detect drug smuggling. \n\nWe’ve set up joint patrols with Mexico and Guatemala to catch more human traffickers. \n\nWe’re putting in place dedicated immigration judges so families fleeing persecution and violence can have their cases heard faster. \n\nWe’re securing commitments and supporting partners in South and Central America to host more refugees and secure their own borders.', metadata={'source': '../../../state_of_the_union.txt', 'year': 2012}),
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/deeplake.html
0c8d9ded5f65-4
Document(page_content='And for our LGBTQ+ Americans, let’s finally get the bipartisan Equality Act to my desk. The onslaught of state laws targeting transgender Americans and their families is wrong. \n\nAs I said last year, especially to our younger transgender Americans, I will always have your back as your President, so you can be yourself and reach your God-given potential. \n\nWhile it often appears that we never agree, that isn’t true. I signed 80 bipartisan bills into law last year. From preventing government shutdowns to protecting Asian-Americans from still-too-common hate crimes to reforming military justice. \n\nAnd soon, we’ll strengthen the Violence Against Women Act that I first wrote three decades ago. It is important for us to show the nation that we can come together and do big things. \n\nSo tonight I’m offering a Unity Agenda for the Nation. Four big things we can do together. \n\nFirst, beat the opioid epidemic.', metadata={'source': '../../../state_of_the_union.txt', 'year': 2013})] Delete dataset# db.delete_dataset() and if delete fails you can also force delete DeepLake.force_delete_by_path("./my_deeplake") Deep Lake datasets on cloud (Activeloop, AWS, GCS, etc.) or in memory# By default deep lake datasets are stored locally, in case you want to store them in memory, in the Deep Lake Managed DB, or in any object storage, you can provide the corresponding path to the dataset. You can retrieve your user token from app.activeloop.ai os.environ['ACTIVELOOP_TOKEN'] = getpass.getpass('Activeloop Token:') # Embed and store the texts username = "<username>" # your username on app.activeloop.ai dataset_path = f"hub://{username}/langchain_test" # could be also ./local/path (much faster locally), s3://bucket/path/to/dataset, gcs://path/to/dataset, etc. embedding = OpenAIEmbeddings() db = DeepLake(dataset_path=dataset_path, embedding_function=embeddings, overwrite=True) db.add_documents(docs) Your Deep Lake dataset has been successfully created! The dataset is private so make sure you are logged in! This dataset can be visualized in Jupyter Notebook by ds.visualize() or at https://app.activeloop.ai/davitbun/langchain_test hub://davitbun/langchain_test loaded successfully. Evaluating ingest: 100%|██████████| 1/1 [00:14<00:00 Dataset(path='hub://davitbun/langchain_test', tensors=['embedding', 'ids', 'metadata', 'text']) tensor htype shape dtype compression ------- ------- ------- ------- ------- embedding generic (4, 1536) float32 None ids text (4, 1) str None metadata json (4, 1) str None text text (4, 1) str None ['d6d6ccb4-e187-11ed-b66d-41c5f7b85421', 'd6d6ccb5-e187-11ed-b66d-41c5f7b85421', 'd6d6ccb6-e187-11ed-b66d-41c5f7b85421', 'd6d6ccb7-e187-11ed-b66d-41c5f7b85421'] query = "What did the president say about Ketanji Brown Jackson" docs = db.similarity_search(query) print(docs[0].page_content) Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence. Creating dataset on AWS S3#
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/deeplake.html
0c8d9ded5f65-5
Creating dataset on AWS S3# dataset_path = f"s3://BUCKET/langchain_test" # could be also ./local/path (much faster locally), hub://bucket/path/to/dataset, gcs://path/to/dataset, etc. embedding = OpenAIEmbeddings() db = DeepLake.from_documents(docs, dataset_path=dataset_path, embedding=embeddings, overwrite=True, creds = { 'aws_access_key_id': os.environ['AWS_ACCESS_KEY_ID'], 'aws_secret_access_key': os.environ['AWS_SECRET_ACCESS_KEY'], 'aws_session_token': os.environ['AWS_SESSION_TOKEN'], # Optional }) s3://hub-2.0-datasets-n/langchain_test loaded successfully. Evaluating ingest: 100%|██████████| 1/1 [00:10<00:00 \ Dataset(path='s3://hub-2.0-datasets-n/langchain_test', tensors=['embedding', 'ids', 'metadata', 'text']) tensor htype shape dtype compression ------- ------- ------- ------- ------- embedding generic (4, 1536) float32 None ids text (4, 1) str None metadata json (4, 1) str None text text (4, 1) str None Deep Lake API# you can access the Deep Lake dataset at db.ds # get structure of the dataset db.ds.summary() Dataset(path='hub://davitbun/langchain_test', tensors=['embedding', 'ids', 'metadata', 'text']) tensor htype shape dtype compression ------- ------- ------- ------- ------- embedding generic (4, 1536) float32 None ids text (4, 1) str None metadata json (4, 1) str None text text (4, 1) str None # get embeddings numpy array embeds = db.ds.embedding.numpy() Transfer local dataset to cloud# Copy already created dataset to the cloud. You can also transfer from cloud to local. import deeplake username = "davitbun" # your username on app.activeloop.ai source = f"hub://{username}/langchain_test" # could be local, s3, gcs, etc. destination = f"hub://{username}/langchain_test_copy" # could be local, s3, gcs, etc. deeplake.deepcopy(src=source, dest=destination, overwrite=True) Copying dataset: 100%|██████████| 56/56 [00:38<00:00 This dataset can be visualized in Jupyter Notebook by ds.visualize() or at https://app.activeloop.ai/davitbun/langchain_test_copy Your Deep Lake dataset has been successfully created! The dataset is private so make sure you are logged in! Dataset(path='hub://davitbun/langchain_test_copy', tensors=['embedding', 'ids', 'metadata', 'text']) db = DeepLake(dataset_path=destination, embedding_function=embeddings) db.add_documents(docs) This dataset can be visualized in Jupyter Notebook by ds.visualize() or at https://app.activeloop.ai/davitbun/langchain_test_copy / hub://davitbun/langchain_test_copy loaded successfully. Deep Lake Dataset in hub://davitbun/langchain_test_copy already exists, loading from the storage Dataset(path='hub://davitbun/langchain_test_copy', tensors=['embedding', 'ids', 'metadata', 'text']) tensor htype shape dtype compression ------- ------- ------- ------- ------- embedding generic (4, 1536) float32 None ids text (4, 1) str None metadata json (4, 1) str None text text (4, 1) str None Evaluating ingest: 100%|██████████| 1/1 [00:31<00:00 - Dataset(path='hub://davitbun/langchain_test_copy', tensors=['embedding', 'ids', 'metadata', 'text']) tensor htype shape dtype compression ------- ------- ------- ------- -------
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/deeplake.html
0c8d9ded5f65-6
------- ------- ------- ------- ------- embedding generic (8, 1536) float32 None ids text (8, 1) str None metadata json (8, 1) str None text text (8, 1) str None ['ad42f3fe-e188-11ed-b66d-41c5f7b85421', 'ad42f3ff-e188-11ed-b66d-41c5f7b85421', 'ad42f400-e188-11ed-b66d-41c5f7b85421', 'ad42f401-e188-11ed-b66d-41c5f7b85421'] previous ClickHouse Vector Search next DocArrayHnswSearch Contents Retrieval Question/Answering Attribute based filtering in metadata Choosing distance function Maximal Marginal relevance Delete dataset Deep Lake datasets on cloud (Activeloop, AWS, GCS, etc.) or in memory Creating dataset on AWS S3 Deep Lake API Transfer local dataset to cloud By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/deeplake.html
24ad99710ee1-0
.ipynb .pdf ClickHouse Vector Search Contents Setting up envrionments Get connection info and data schema Clickhouse table schema Filtering Deleting your data ClickHouse Vector Search# ClickHouse is the fastest and most resource efficient open-source database for real-time apps and analytics with full SQL support and a wide range of functions to assist users in writing analytical queries. Lately added data structures and distance search functions (like L2Distance) as well as approximate nearest neighbor search indexes enable ClickHouse to be used as a high performance and scalable vector database to store and search vectors with SQL. This notebook shows how to use functionality related to the ClickHouse vector search. Setting up envrionments# Setting up local clickhouse server with docker (optional) ! docker run -d -p 8123:8123 -p9000:9000 --name langchain-clickhouse-server --ulimit nofile=262144:262144 clickhouse/clickhouse-server:23.4.2.11 Setup up clickhouse client driver !pip install clickhouse-connect We want to use OpenAIEmbeddings so we have to get the OpenAI API Key. import os import getpass if not os.environ['OPENAI_API_KEY']: os.environ['OPENAI_API_KEY'] = getpass.getpass('OpenAI API Key:') from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import Clickhouse, ClickhouseSettings from langchain.document_loaders import TextLoader loader = TextLoader('../../../state_of_the_union.txt') documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() for d in docs: d.metadata = {'some': 'metadata'} settings = ClickhouseSettings(table="clickhouse_vector_search_example") docsearch = Clickhouse.from_documents(docs, embeddings, config=settings) query = "What did the president say about Ketanji Brown Jackson" docs = docsearch.similarity_search(query) Inserting data...: 100%|██████████| 42/42 [00:00<00:00, 2801.49it/s] print(docs[0].page_content) Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence. Get connection info and data schema# print(str(docsearch)) default.clickhouse_vector_search_example @ localhost:8123 username: None Table Schema: --------------------------------------------------- |id |Nullable(String) | |document |Nullable(String) | |embedding |Array(Float32) | |metadata |Object('json') | |uuid |UUID | --------------------------------------------------- Clickhouse table schema# Clickhouse table will be automatically created if not exist by default. Advanced users could pre-create the table with optimized settings. For distributed Clickhouse cluster with sharding, table engine should be configured as Distributed. print(f"Clickhouse Table DDL:\n\n{docsearch.schema}") Clickhouse Table DDL: CREATE TABLE IF NOT EXISTS default.clickhouse_vector_search_example( id Nullable(String), document Nullable(String), embedding Array(Float32), metadata JSON, uuid UUID DEFAULT generateUUIDv4(), CONSTRAINT cons_vec_len CHECK length(embedding) = 1536, INDEX vec_idx embedding TYPE annoy(100,'L2Distance') GRANULARITY 1000 ) ENGINE = MergeTree ORDER BY uuid SETTINGS index_granularity = 8192 Filtering# You can have direct access to ClickHouse SQL where statement. You can write WHERE clause following standard SQL. NOTE: Please be aware of SQL injection, this interface must not be directly called by end-user.
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/clickhouse.html
24ad99710ee1-1
If you custimized your column_map under your setting, you search with filter like this: from langchain.vectorstores import Clickhouse, ClickhouseSettings from langchain.document_loaders import TextLoader loader = TextLoader('../../../state_of_the_union.txt') documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() for i, d in enumerate(docs): d.metadata = {'doc_id': i} docsearch = Clickhouse.from_documents(docs, embeddings) Inserting data...: 100%|██████████| 42/42 [00:00<00:00, 6939.56it/s] meta = docsearch.metadata_column output = docsearch.similarity_search_with_relevance_scores('What did the president say about Ketanji Brown Jackson?', k=4, where_str=f"{meta}.doc_id<10") for d, dist in output: print(dist, d.metadata, d.page_content[:20] + '...') 0.6779101415357189 {'doc_id': 0} Madam Speaker, Madam... 0.6997970363474885 {'doc_id': 8} And so many families... 0.7044504914336727 {'doc_id': 1} Groups of citizens b... 0.7053558702165094 {'doc_id': 6} And I’m taking robus... Deleting your data# docsearch.drop() previous Chroma next Deep Lake Contents Setting up envrionments Get connection info and data schema Clickhouse table schema Filtering Deleting your data By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/indexes/vectorstores/examples/clickhouse.html
374093f54bbc-0
.ipynb .pdf Self-querying with Weaviate Contents Creating a Weaviate vectorstore Creating our self-querying retriever Testing it out Filter k Self-querying with Weaviate# Creating a Weaviate vectorstore# First we’ll want to create a Weaviate VectorStore and seed it with some data. We’ve created a small demo set of documents that contain summaries of movies. NOTE: The self-query retriever requires you to have lark installed (pip install lark). We also need the weaviate-client package. #!pip install lark weaviate-client from langchain.schema import Document from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import Weaviate import os embeddings = OpenAIEmbeddings() docs = [ Document(page_content="A bunch of scientists bring back dinosaurs and mayhem breaks loose", metadata={"year": 1993, "rating": 7.7, "genre": "science fiction"}), Document(page_content="Leo DiCaprio gets lost in a dream within a dream within a dream within a ...", metadata={"year": 2010, "director": "Christopher Nolan", "rating": 8.2}), Document(page_content="A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea", metadata={"year": 2006, "director": "Satoshi Kon", "rating": 8.6}), Document(page_content="A bunch of normal-sized women are supremely wholesome and some men pine after them", metadata={"year": 2019, "director": "Greta Gerwig", "rating": 8.3}), Document(page_content="Toys come alive and have a blast doing so", metadata={"year": 1995, "genre": "animated"}), Document(page_content="Three men walk into the Zone, three men walk out of the Zone", metadata={"year": 1979, "rating": 9.9, "director": "Andrei Tarkovsky", "genre": "science fiction", "rating": 9.9}) ] vectorstore = Weaviate.from_documents( docs, embeddings, weaviate_url="http://127.0.0.1:8080" ) Creating our self-querying retriever# Now we can instantiate our retriever. To do this we’ll need to provide some information upfront about the metadata fields that our documents support and a short description of the document contents. from langchain.llms import OpenAI from langchain.retrievers.self_query.base import SelfQueryRetriever from langchain.chains.query_constructor.base import AttributeInfo metadata_field_info=[ AttributeInfo( name="genre", description="The genre of the movie", type="string or list[string]", ), AttributeInfo( name="year", description="The year the movie was released", type="integer", ), AttributeInfo( name="director", description="The name of the movie director", type="string", ), AttributeInfo( name="rating", description="A 1-10 rating for the movie", type="float" ), ] document_content_description = "Brief summary of a movie" llm = OpenAI(temperature=0) retriever = SelfQueryRetriever.from_llm(llm, vectorstore, document_content_description, metadata_field_info, verbose=True) Testing it out# And now we can try actually using our retriever! # This example only specifies a relevant query retriever.get_relevant_documents("What are some movies about dinosaurs") query='dinosaur' filter=None limit=None [Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'genre': 'science fiction', 'rating': 7.7, 'year': 1993}), Document(page_content='Toys come alive and have a blast doing so', metadata={'genre': 'animated', 'rating': None, 'year': 1995}), Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'genre': 'science fiction', 'rating': 9.9, 'year': 1979}),
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/weaviate_self_query.html
374093f54bbc-1
Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'genre': None, 'rating': 8.6, 'year': 2006})] # This example specifies a query and a filter retriever.get_relevant_documents("Has Greta Gerwig directed any movies about women") query='women' filter=Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='director', value='Greta Gerwig') limit=None [Document(page_content='A bunch of normal-sized women are supremely wholesome and some men pine after them', metadata={'genre': None, 'rating': 8.3, 'year': 2019})] Filter k# We can also use the self query retriever to specify k: the number of documents to fetch. We can do this by passing enable_limit=True to the constructor. retriever = SelfQueryRetriever.from_llm( llm, vectorstore, document_content_description, metadata_field_info, enable_limit=True, verbose=True ) # This example only specifies a relevant query retriever.get_relevant_documents("what are two movies about dinosaurs") query='dinosaur' filter=None limit=2 [Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'genre': 'science fiction', 'rating': 7.7, 'year': 1993}), Document(page_content='Toys come alive and have a blast doing so', metadata={'genre': 'animated', 'rating': None, 'year': 1995})] previous Weaviate Hybrid Search next Wikipedia Contents Creating a Weaviate vectorstore Creating our self-querying retriever Testing it out Filter k By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/weaviate_self_query.html
bfa2b8fa15d5-0
.ipynb .pdf VectorStore Contents Maximum Marginal Relevance Retrieval Similarity Score Threshold Retrieval Specifying top k VectorStore# The index - and therefore the retriever - that LangChain has the most support for is the VectorStoreRetriever. As the name suggests, this retriever is backed heavily by a VectorStore. Once you construct a VectorStore, its very easy to construct a retriever. Let’s walk through an example. from langchain.document_loaders import TextLoader loader = TextLoader('../../../state_of_the_union.txt') from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import FAISS from langchain.embeddings import OpenAIEmbeddings documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() db = FAISS.from_documents(texts, embeddings) Exiting: Cleaning up .chroma directory retriever = db.as_retriever() docs = retriever.get_relevant_documents("what did he say about ketanji brown jackson") Maximum Marginal Relevance Retrieval# By default, the vectorstore retriever uses similarity search. If the underlying vectorstore support maximum marginal relevance search, you can specify that as the search type. retriever = db.as_retriever(search_type="mmr") docs = retriever.get_relevant_documents("what did he say abotu ketanji brown jackson") Similarity Score Threshold Retrieval# You can also a retrieval method that sets a similarity score threshold and only returns documents with a score above that threshold retriever = db.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": .5}) docs = retriever.get_relevant_documents("what did he say abotu ketanji brown jackson") Specifying top k# You can also specify search kwargs like k to use when doing retrieval. retriever = db.as_retriever(search_kwargs={"k": 1}) docs = retriever.get_relevant_documents("what did he say abotu ketanji brown jackson") len(docs) 1 previous Time Weighted VectorStore next Vespa Contents Maximum Marginal Relevance Retrieval Similarity Score Threshold Retrieval Specifying top k By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/vectorstore.html
7b1288250945-0
.ipynb .pdf Zep Contents Retriever Example Initialize the Zep Chat Message History Class and add a chat message history to the memory store Use the Zep Retriever to vector search over the Zep memory Zep# Zep - A long-term memory store for LLM applications. More on Zep: Zep stores, summarizes, embeds, indexes, and enriches conversational AI chat histories, and exposes them via simple, low-latency APIs. Key Features: Long-term memory persistence, with access to historical messages irrespective of your summarization strategy. Auto-summarization of memory messages based on a configurable message window. A series of summaries are stored, providing flexibility for future summarization strategies. Vector search over memories, with messages automatically embedded on creation. Auto-token counting of memories and summaries, allowing finer-grained control over prompt assembly. Python and JavaScript SDKs. Zep’s Go Extractor model is easily extensible, with a simple, clean interface available to build new enrichment functionality, such as summarizers, entity extractors, embedders, and more. Zep project: getzep/zep Retriever Example# This notebook demonstrates how to search historical chat message histories using the Zep Long-term Memory Store. We’ll demonstrate: Adding conversation history to the Zep memory store. Vector search over the conversation history. from langchain.memory.chat_message_histories import ZepChatMessageHistory from langchain.schema import HumanMessage, AIMessage from uuid import uuid4 # Set this to your Zep server URL ZEP_API_URL = "http://localhost:8000" Initialize the Zep Chat Message History Class and add a chat message history to the memory store# NOTE: Unlike other Retrievers, the content returned by the Zep Retriever is session/user specific. A session_id is required when instantiating the Retriever. session_id = str(uuid4()) # This is a unique identifier for the user/session # Set up Zep Chat History. We'll use this to add chat histories to the memory store zep_chat_history = ZepChatMessageHistory( session_id=session_id, url=ZEP_API_URL, ) # Preload some messages into the memory. The default message window is 12 messages. We want to push beyond this to demonstrate auto-summarization. test_history = [ {"role": "human", "content": "Who was Octavia Butler?"}, { "role": "ai", "content": ( "Octavia Estelle Butler (June 22, 1947 – February 24, 2006) was an American" " science fiction author." ), }, {"role": "human", "content": "Which books of hers were made into movies?"}, { "role": "ai", "content": ( "The most well-known adaptation of Octavia Butler's work is the FX series" " Kindred, based on her novel of the same name." ), }, {"role": "human", "content": "Who were her contemporaries?"}, { "role": "ai", "content": ( "Octavia Butler's contemporaries included Ursula K. Le Guin, Samuel R." " Delany, and Joanna Russ." ), }, {"role": "human", "content": "What awards did she win?"}, { "role": "ai", "content": ( "Octavia Butler won the Hugo Award, the Nebula Award, and the MacArthur" " Fellowship." ), }, { "role": "human", "content": "Which other women sci-fi writers might I want to read?", }, { "role": "ai", "content": "You might want to read Ursula K. Le Guin or Joanna Russ.", }, { "role": "human", "content": ( "Write a short synopsis of Butler's book, Parable of the Sower. What is it" " about?" ), }, { "role": "ai", "content": ( "Parable of the Sower is a science fiction novel by Octavia Butler," " published in 1993. It follows the story of Lauren Olamina, a young woman"
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/zep_memorystore.html
7b1288250945-1
" living in a dystopian future where society has collapsed due to" " environmental disasters, poverty, and violence." ), }, ] for msg in test_history: zep_chat_history.append( HumanMessage(content=msg["content"]) if msg["role"] == "human" else AIMessage(content=msg["content"]) ) Use the Zep Retriever to vector search over the Zep memory# Zep provides native vector search over historical conversation memory. Embedding happens automatically. NOTE: Embedding of messages occurs asynchronously, so the first query may not return results. Subsequent queries will return results as the embeddings are generated. from langchain.retrievers import ZepRetriever zep_retriever = ZepRetriever( session_id=session_id, # Ensure that you provide the session_id when instantiating the Retriever url=ZEP_API_URL, top_k=5, ) await zep_retriever.aget_relevant_documents("Who wrote Parable of the Sower?") [Document(page_content='Who was Octavia Butler?', metadata={'score': 0.7759001673780126, 'uuid': '3a82a02f-056e-4c6a-b960-67ebdf3b2b93', 'created_at': '2023-05-25T15:03:30.2041Z', 'role': 'human', 'token_count': 8}), Document(page_content="Octavia Butler's contemporaries included Ursula K. Le Guin, Samuel R. Delany, and Joanna Russ.", metadata={'score': 0.7602262941130749, 'uuid': 'a2fc9c21-0897-46c8-bef7-6f5c0f71b04a', 'created_at': '2023-05-25T15:03:30.248065Z', 'role': 'ai', 'token_count': 27}), Document(page_content='Who were her contemporaries?', metadata={'score': 0.757553366415519, 'uuid': '41f9c41a-a205-41e1-b48b-a0a4cd943fc8', 'created_at': '2023-05-25T15:03:30.243995Z', 'role': 'human', 'token_count': 8}), Document(page_content='Octavia Estelle Butler (June 22, 1947 – February 24, 2006) was an American science fiction author.', metadata={'score': 0.7546211059317948, 'uuid': '34678311-0098-4f1a-8fd4-5615ac692deb', 'created_at': '2023-05-25T15:03:30.231427Z', 'role': 'ai', 'token_count': 31}), Document(page_content='Which books of hers were made into movies?', metadata={'score': 0.7496714959247069, 'uuid': '18046c3a-9666-4d3e-b4f0-43d1394732b7', 'created_at': '2023-05-25T15:03:30.236837Z', 'role': 'human', 'token_count': 11})] We can also use the Zep sync API to retrieve results: zep_retriever.get_relevant_documents("Who wrote Parable of the Sower?") [Document(page_content='Parable of the Sower is a science fiction novel by Octavia Butler, published in 1993. It follows the story of Lauren Olamina, a young woman living in a dystopian future where society has collapsed due to environmental disasters, poverty, and violence.', metadata={'score': 0.8897321402776546, 'uuid': '1c09603a-52c1-40d7-9d69-29f26256029c', 'created_at': '2023-05-25T15:03:30.268257Z', 'role': 'ai', 'token_count': 56}),
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/zep_memorystore.html
7b1288250945-2
Document(page_content="Write a short synopsis of Butler's book, Parable of the Sower. What is it about?", metadata={'score': 0.8857628682610436, 'uuid': 'f6706e8c-6c91-452f-8c1b-9559fd924657', 'created_at': '2023-05-25T15:03:30.265302Z', 'role': 'human', 'token_count': 23}), Document(page_content='Who was Octavia Butler?', metadata={'score': 0.7759670375149477, 'uuid': '3a82a02f-056e-4c6a-b960-67ebdf3b2b93', 'created_at': '2023-05-25T15:03:30.2041Z', 'role': 'human', 'token_count': 8}), Document(page_content="Octavia Butler's contemporaries included Ursula K. Le Guin, Samuel R. Delany, and Joanna Russ.", metadata={'score': 0.7602854653476563, 'uuid': 'a2fc9c21-0897-46c8-bef7-6f5c0f71b04a', 'created_at': '2023-05-25T15:03:30.248065Z', 'role': 'ai', 'token_count': 27}), Document(page_content='You might want to read Ursula K. Le Guin or Joanna Russ.', metadata={'score': 0.7595293992240313, 'uuid': 'f22f2498-6118-4c74-8718-aa89ccd7e3d6', 'created_at': '2023-05-25T15:03:30.261198Z', 'role': 'ai', 'token_count': 18})] previous Wikipedia next Chains Contents Retriever Example Initialize the Zep Chat Message History Class and add a chat message history to the memory store Use the Zep Retriever to vector search over the Zep memory By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/zep_memorystore.html
21ee3ea94a99-0
.ipynb .pdf Contextual Compression Contents Contextual Compression Using a vanilla vector store retriever Adding contextual compression with an LLMChainExtractor More built-in compressors: filters LLMChainFilter EmbeddingsFilter Stringing compressors and document transformers together Contextual Compression# This notebook introduces the concept of DocumentCompressors and the ContextualCompressionRetriever. The core idea is simple: given a specific query, we should be able to return only the documents relevant to that query, and only the parts of those documents that are relevant. The ContextualCompressionsRetriever is a wrapper for another retriever that iterates over the initial output of the base retriever and filters and compresses those initial documents, so that only the most relevant information is returned. # Helper function for printing docs def pretty_print_docs(docs): print(f"\n{'-' * 100}\n".join([f"Document {i+1}:\n\n" + d.page_content for i, d in enumerate(docs)])) Using a vanilla vector store retriever# Let’s start by initializing a simple vector store retriever and storing the 2023 State of the Union speech (in chunks). We can see that given an example question our retriever returns one or two relevant docs and a few irrelevant docs. And even the relevant docs have a lot of irrelevant information in them. from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings import OpenAIEmbeddings from langchain.document_loaders import TextLoader from langchain.vectorstores import FAISS documents = TextLoader('../../../state_of_the_union.txt').load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_documents(documents) retriever = FAISS.from_documents(texts, OpenAIEmbeddings()).as_retriever() docs = retriever.get_relevant_documents("What did the president say about Ketanji Brown Jackson") pretty_print_docs(docs) Document 1: Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence. ---------------------------------------------------------------------------------------------------- Document 2: A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since she’s been nominated, she’s received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. And if we are to advance liberty and justice, we need to secure the Border and fix the immigration system. We can do both. At our border, we’ve installed new technology like cutting-edge scanners to better detect drug smuggling. We’ve set up joint patrols with Mexico and Guatemala to catch more human traffickers. We’re putting in place dedicated immigration judges so families fleeing persecution and violence can have their cases heard faster. We’re securing commitments and supporting partners in South and Central America to host more refugees and secure their own borders. ---------------------------------------------------------------------------------------------------- Document 3: And for our LGBTQ+ Americans, let’s finally get the bipartisan Equality Act to my desk. The onslaught of state laws targeting transgender Americans and their families is wrong. As I said last year, especially to our younger transgender Americans, I will always have your back as your President, so you can be yourself and reach your God-given potential. While it often appears that we never agree, that isn’t true. I signed 80 bipartisan bills into law last year. From preventing government shutdowns to protecting Asian-Americans from still-too-common hate crimes to reforming military justice. And soon, we’ll strengthen the Violence Against Women Act that I first wrote three decades ago. It is important for us to show the nation that we can come together and do big things. So tonight I’m offering a Unity Agenda for the Nation. Four big things we can do together. First, beat the opioid epidemic. ----------------------------------------------------------------------------------------------------
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/contextual-compression.html
21ee3ea94a99-1
First, beat the opioid epidemic. ---------------------------------------------------------------------------------------------------- Document 4: Tonight, I’m announcing a crackdown on these companies overcharging American businesses and consumers. And as Wall Street firms take over more nursing homes, quality in those homes has gone down and costs have gone up. That ends on my watch. Medicare is going to set higher standards for nursing homes and make sure your loved ones get the care they deserve and expect. We’ll also cut costs and keep the economy going strong by giving workers a fair shot, provide more training and apprenticeships, hire them based on their skills not degrees. Let’s pass the Paycheck Fairness Act and paid leave. Raise the minimum wage to $15 an hour and extend the Child Tax Credit, so no one has to raise a family in poverty. Let’s increase Pell Grants and increase our historic support of HBCUs, and invest in what Jill—our First Lady who teaches full-time—calls America’s best-kept secret: community colleges. Adding contextual compression with an LLMChainExtractor# Now let’s wrap our base retriever with a ContextualCompressionRetriever. We’ll add an LLMChainExtractor, which will iterate over the initially returned documents and extract from each only the content that is relevant to the query. from langchain.llms import OpenAI from langchain.retrievers import ContextualCompressionRetriever from langchain.retrievers.document_compressors import LLMChainExtractor llm = OpenAI(temperature=0) compressor = LLMChainExtractor.from_llm(llm) compression_retriever = ContextualCompressionRetriever(base_compressor=compressor, base_retriever=retriever) compressed_docs = compression_retriever.get_relevant_documents("What did the president say about Ketanji Jackson Brown") pretty_print_docs(compressed_docs) Document 1: "One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence." ---------------------------------------------------------------------------------------------------- Document 2: "A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since she’s been nominated, she’s received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans." More built-in compressors: filters# LLMChainFilter# The LLMChainFilter is slightly simpler but more robust compressor that uses an LLM chain to decide which of the initially retrieved documents to filter out and which ones to return, without manipulating the document contents. from langchain.retrievers.document_compressors import LLMChainFilter _filter = LLMChainFilter.from_llm(llm) compression_retriever = ContextualCompressionRetriever(base_compressor=_filter, base_retriever=retriever) compressed_docs = compression_retriever.get_relevant_documents("What did the president say about Ketanji Jackson Brown") pretty_print_docs(compressed_docs) Document 1: Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence. EmbeddingsFilter# Making an extra LLM call over each retrieved document is expensive and slow. The EmbeddingsFilter provides a cheaper and faster option by embedding the documents and query and only returning those documents which have sufficiently similar embeddings to the query. from langchain.embeddings import OpenAIEmbeddings from langchain.retrievers.document_compressors import EmbeddingsFilter embeddings = OpenAIEmbeddings() embeddings_filter = EmbeddingsFilter(embeddings=embeddings, similarity_threshold=0.76) compression_retriever = ContextualCompressionRetriever(base_compressor=embeddings_filter, base_retriever=retriever)
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/contextual-compression.html
21ee3ea94a99-2
compressed_docs = compression_retriever.get_relevant_documents("What did the president say about Ketanji Jackson Brown") pretty_print_docs(compressed_docs) Document 1: Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence. ---------------------------------------------------------------------------------------------------- Document 2: A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since she’s been nominated, she’s received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. And if we are to advance liberty and justice, we need to secure the Border and fix the immigration system. We can do both. At our border, we’ve installed new technology like cutting-edge scanners to better detect drug smuggling. We’ve set up joint patrols with Mexico and Guatemala to catch more human traffickers. We’re putting in place dedicated immigration judges so families fleeing persecution and violence can have their cases heard faster. We’re securing commitments and supporting partners in South and Central America to host more refugees and secure their own borders. ---------------------------------------------------------------------------------------------------- Document 3: And for our LGBTQ+ Americans, let’s finally get the bipartisan Equality Act to my desk. The onslaught of state laws targeting transgender Americans and their families is wrong. As I said last year, especially to our younger transgender Americans, I will always have your back as your President, so you can be yourself and reach your God-given potential. While it often appears that we never agree, that isn’t true. I signed 80 bipartisan bills into law last year. From preventing government shutdowns to protecting Asian-Americans from still-too-common hate crimes to reforming military justice. And soon, we’ll strengthen the Violence Against Women Act that I first wrote three decades ago. It is important for us to show the nation that we can come together and do big things. So tonight I’m offering a Unity Agenda for the Nation. Four big things we can do together. First, beat the opioid epidemic. Stringing compressors and document transformers together# Using the DocumentCompressorPipeline we can also easily combine multiple compressors in sequence. Along with compressors we can add BaseDocumentTransformers to our pipeline, which don’t perform any contextual compression but simply perform some transformation on a set of documents. For example TextSplitters can be used as document transformers to split documents into smaller pieces, and the EmbeddingsRedundantFilter can be used to filter out redundant documents based on embedding similarity between documents. Below we create a compressor pipeline by first splitting our docs into smaller chunks, then removing redundant documents, and then filtering based on relevance to the query. from langchain.document_transformers import EmbeddingsRedundantFilter from langchain.retrievers.document_compressors import DocumentCompressorPipeline from langchain.text_splitter import CharacterTextSplitter splitter = CharacterTextSplitter(chunk_size=300, chunk_overlap=0, separator=". ") redundant_filter = EmbeddingsRedundantFilter(embeddings=embeddings) relevant_filter = EmbeddingsFilter(embeddings=embeddings, similarity_threshold=0.76) pipeline_compressor = DocumentCompressorPipeline( transformers=[splitter, redundant_filter, relevant_filter] ) compression_retriever = ContextualCompressionRetriever(base_compressor=pipeline_compressor, base_retriever=retriever) compressed_docs = compression_retriever.get_relevant_documents("What did the president say about Ketanji Jackson Brown") pretty_print_docs(compressed_docs) Document 1: One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson ---------------------------------------------------------------------------------------------------- Document 2:
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/contextual-compression.html
21ee3ea94a99-3
---------------------------------------------------------------------------------------------------- Document 2: As I said last year, especially to our younger transgender Americans, I will always have your back as your President, so you can be yourself and reach your God-given potential. While it often appears that we never agree, that isn’t true. I signed 80 bipartisan bills into law last year ---------------------------------------------------------------------------------------------------- Document 3: A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder previous Cohere Reranker next Databerry Contents Contextual Compression Using a vanilla vector store retriever Adding contextual compression with an LLMChainExtractor More built-in compressors: filters LLMChainFilter EmbeddingsFilter Stringing compressors and document transformers together By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/contextual-compression.html
969d44ef95a6-0
.ipynb .pdf Wikipedia Contents Installation Examples Running retriever Question Answering on facts Wikipedia# Wikipedia is a multilingual free online encyclopedia written and maintained by a community of volunteers, known as Wikipedians, through open collaboration and using a wiki-based editing system called MediaWiki. Wikipedia is the largest and most-read reference work in history. This notebook shows how to retrieve wiki pages from wikipedia.org into the Document format that is used downstream. Installation# First, you need to install wikipedia python package. #!pip install wikipedia WikipediaRetriever has these arguments: optional lang: default=”en”. Use it to search in a specific language part of Wikipedia optional load_max_docs: default=100. Use it to limit number of downloaded documents. It takes time to download all 100 documents, so use a small number for experiments. There is a hard limit of 300 for now. optional load_all_available_meta: default=False. By default only the most important fields downloaded: Published (date when document was published/last updated), title, Summary. If True, other fields also downloaded. get_relevant_documents() has one argument, query: free text which used to find documents in Wikipedia Examples# Running retriever# from langchain.retrievers import WikipediaRetriever retriever = WikipediaRetriever() docs = retriever.get_relevant_documents(query='HUNTER X HUNTER') docs[0].metadata # meta-information of the Document {'title': 'Hunter × Hunter', 'summary': 'Hunter × Hunter (stylized as HUNTER×HUNTER and pronounced "hunter hunter") is a Japanese manga series written and illustrated by Yoshihiro Togashi. It has been serialized in Shueisha\'s shōnen manga magazine Weekly Shōnen Jump since March 1998, although the manga has frequently gone on extended hiatuses since 2006. Its chapters have been collected in 37 tankōbon volumes as of November 2022. The story focuses on a young boy named Gon Freecss who discovers that his father, who left him at a young age, is actually a world-renowned Hunter, a licensed professional who specializes in fantastical pursuits such as locating rare or unidentified animal species, treasure hunting, surveying unexplored enclaves, or hunting down lawless individuals. Gon departs on a journey to become a Hunter and eventually find his father. Along the way, Gon meets various other Hunters and encounters the paranormal.\nHunter × Hunter was adapted into a 62-episode anime television series produced by Nippon Animation and directed by Kazuhiro Furuhashi, which ran on Fuji Television from October 1999 to March 2001. Three separate original video animations (OVAs) totaling 30 episodes were subsequently produced by Nippon Animation and released in Japan from 2002 to 2004. A second anime television series by Madhouse aired on Nippon Television from October 2011 to September 2014, totaling 148 episodes, with two animated theatrical films released in 2013. There are also numerous audio albums, video games, musicals, and other media based on Hunter × Hunter.\nThe manga has been translated into English and released in North America by Viz Media since April 2005. Both television series have been also licensed by Viz Media, with the first series having aired on the Funimation Channel in 2009 and the second series broadcast on Adult Swim\'s Toonami programming block from April 2016 to June 2019.\nHunter × Hunter has been a huge critical and financial success and has become one of the best-selling manga series of all time, having over 84 million copies in circulation by July 2022.\n\n'} docs[0].page_content[:400] # a content of the Document 'Hunter × Hunter (stylized as HUNTER×HUNTER and pronounced "hunter hunter") is a Japanese manga series written and illustrated by Yoshihiro Togashi. It has been serialized in Shueisha\'s shōnen manga magazine Weekly Shōnen Jump since March 1998, although the manga has frequently gone on extended hiatuses since 2006. Its chapters have been collected in 37 tankōbon volumes as of November 2022. The sto' Question Answering on facts# # get a token: https://platform.openai.com/account/api-keys from getpass import getpass OPENAI_API_KEY = getpass() ········ import os os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY from langchain.chat_models import ChatOpenAI from langchain.chains import ConversationalRetrievalChain
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/wikipedia.html
969d44ef95a6-1
from langchain.chains import ConversationalRetrievalChain model = ChatOpenAI(model_name='gpt-3.5-turbo') # switch to 'gpt-4' qa = ConversationalRetrievalChain.from_llm(model,retriever=retriever) questions = [ "What is Apify?", "When the Monument to the Martyrs of the 1830 Revolution was created?", "What is the Abhayagiri Vihāra?", # "How big is Wikipédia en français?", ] chat_history = [] for question in questions: result = qa({"question": question, "chat_history": chat_history}) chat_history.append((question, result['answer'])) print(f"-> **Question**: {question} \n") print(f"**Answer**: {result['answer']} \n") -> **Question**: What is Apify? **Answer**: Apify is a platform that allows you to easily automate web scraping, data extraction and web automation. It provides a cloud-based infrastructure for running web crawlers and other automation tasks, as well as a web-based tool for building and managing your crawlers. Additionally, Apify offers a marketplace for buying and selling pre-built crawlers and related services. -> **Question**: When the Monument to the Martyrs of the 1830 Revolution was created? **Answer**: Apify is a web scraping and automation platform that enables you to extract data from websites, turn unstructured data into structured data, and automate repetitive tasks. It provides a user-friendly interface for creating web scraping scripts without any coding knowledge. Apify can be used for various web scraping tasks such as data extraction, web monitoring, content aggregation, and much more. Additionally, it offers various features such as proxy support, scheduling, and integration with other tools to make web scraping and automation tasks easier and more efficient. -> **Question**: What is the Abhayagiri Vihāra? **Answer**: Abhayagiri Vihāra was a major monastery site of Theravada Buddhism that was located in Anuradhapura, Sri Lanka. It was founded in the 2nd century BCE and is considered to be one of the most important monastic complexes in Sri Lanka. previous Self-querying with Weaviate next Zep Contents Installation Examples Running retriever Question Answering on facts By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/wikipedia.html
4cbc97f54dcb-0
.ipynb .pdf ChatGPT Plugin Contents Using the ChatGPT Retriever Plugin ChatGPT Plugin# OpenAI plugins connect ChatGPT to third-party applications. These plugins enable ChatGPT to interact with APIs defined by developers, enhancing ChatGPT’s capabilities and allowing it to perform a wide range of actions. Plugins can allow ChatGPT to do things like: Retrieve real-time information; e.g., sports scores, stock prices, the latest news, etc. Retrieve knowledge-base information; e.g., company docs, personal notes, etc. Perform actions on behalf of the user; e.g., booking a flight, ordering food, etc. This notebook shows how to use the ChatGPT Retriever Plugin within LangChain. # STEP 1: Load # Load documents using LangChain's DocumentLoaders # This is from https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/csv.html from langchain.document_loaders.csv_loader import CSVLoader loader = CSVLoader(file_path='../../document_loaders/examples/example_data/mlb_teams_2012.csv') data = loader.load() # STEP 2: Convert # Convert Document to format expected by https://github.com/openai/chatgpt-retrieval-plugin from typing import List from langchain.docstore.document import Document import json def write_json(path: str, documents: List[Document])-> None: results = [{"text": doc.page_content} for doc in documents] with open(path, "w") as f: json.dump(results, f, indent=2) write_json("foo.json", data) # STEP 3: Use # Ingest this as you would any other json file in https://github.com/openai/chatgpt-retrieval-plugin/tree/main/scripts/process_json Using the ChatGPT Retriever Plugin# Okay, so we’ve created the ChatGPT Retriever Plugin, but how do we actually use it? The below code walks through how to do that. We want to use ChatGPTPluginRetriever so we have to get the OpenAI API Key. import os import getpass os.environ['OPENAI_API_KEY'] = getpass.getpass('OpenAI API Key:') from langchain.retrievers import ChatGPTPluginRetriever retriever = ChatGPTPluginRetriever(url="http://0.0.0.0:8000", bearer_token="foo") retriever.get_relevant_documents("alice's phone number") [Document(page_content="This is Alice's phone number: 123-456-7890", lookup_str='', metadata={'id': '456_0', 'metadata': {'source': 'email', 'source_id': '567', 'url': None, 'created_at': '1609592400.0', 'author': 'Alice', 'document_id': '456'}, 'embedding': None, 'score': 0.925571561}, lookup_index=0), Document(page_content='This is a document about something', lookup_str='', metadata={'id': '123_0', 'metadata': {'source': 'file', 'source_id': 'https://example.com/doc1', 'url': 'https://example.com/doc1', 'created_at': '1609502400.0', 'author': 'Alice', 'document_id': '123'}, 'embedding': None, 'score': 0.6987589}, lookup_index=0), Document(page_content='Team: Angels "Payroll (millions)": 154.49 "Wins": 89', lookup_str='', metadata={'id': '59c2c0c1-ae3f-4272-a1da-f44a723ea631_0', 'metadata': {'source': None, 'source_id': None, 'url': None, 'created_at': None, 'author': None, 'document_id': '59c2c0c1-ae3f-4272-a1da-f44a723ea631'}, 'embedding': None, 'score': 0.697888613}, lookup_index=0)] previous Azure Cognitive Search next Self-querying with Chroma Contents Using the ChatGPT Retriever Plugin By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/chatgpt-plugin.html
3f4073807186-0
.ipynb .pdf Time Weighted VectorStore Contents Low Decay Rate High Decay Rate Virtual Time Time Weighted VectorStore# This retriever uses a combination of semantic similarity and a time decay. The algorithm for scoring them is: semantic_similarity + (1.0 - decay_rate) ** hours_passed Notably, hours_passed refers to the hours passed since the object in the retriever was last accessed, not since it was created. This means that frequently accessed objects remain “fresh.” import faiss from datetime import datetime, timedelta from langchain.docstore import InMemoryDocstore from langchain.embeddings import OpenAIEmbeddings from langchain.retrievers import TimeWeightedVectorStoreRetriever from langchain.schema import Document from langchain.vectorstores import FAISS Low Decay Rate# A low decay rate (in this, to be extreme, we will set close to 0) means memories will be “remembered” for longer. A decay rate of 0 means memories never be forgotten, making this retriever equivalent to the vector lookup. # Define your embedding model embeddings_model = OpenAIEmbeddings() # Initialize the vectorstore as empty embedding_size = 1536 index = faiss.IndexFlatL2(embedding_size) vectorstore = FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {}) retriever = TimeWeightedVectorStoreRetriever(vectorstore=vectorstore, decay_rate=.0000000000000000000000001, k=1) yesterday = datetime.now() - timedelta(days=1) retriever.add_documents([Document(page_content="hello world", metadata={"last_accessed_at": yesterday})]) retriever.add_documents([Document(page_content="hello foo")]) ['d7f85756-2371-4bdf-9140-052780a0f9b3'] # "Hello World" is returned first because it is most salient, and the decay rate is close to 0., meaning it's still recent enough retriever.get_relevant_documents("hello world") [Document(page_content='hello world', metadata={'last_accessed_at': datetime.datetime(2023, 5, 13, 21, 0, 27, 678341), 'created_at': datetime.datetime(2023, 5, 13, 21, 0, 27, 279596), 'buffer_idx': 0})] High Decay Rate# With a high decay rate (e.g., several 9’s), the recency score quickly goes to 0! If you set this all the way to 1, recency is 0 for all objects, once again making this equivalent to a vector lookup. # Define your embedding model embeddings_model = OpenAIEmbeddings() # Initialize the vectorstore as empty embedding_size = 1536 index = faiss.IndexFlatL2(embedding_size) vectorstore = FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {}) retriever = TimeWeightedVectorStoreRetriever(vectorstore=vectorstore, decay_rate=.999, k=1) yesterday = datetime.now() - timedelta(days=1) retriever.add_documents([Document(page_content="hello world", metadata={"last_accessed_at": yesterday})]) retriever.add_documents([Document(page_content="hello foo")]) ['40011466-5bbe-4101-bfd1-e22e7f505de2'] # "Hello Foo" is returned first because "hello world" is mostly forgotten retriever.get_relevant_documents("hello world") [Document(page_content='hello foo', metadata={'last_accessed_at': datetime.datetime(2023, 4, 16, 22, 9, 2, 494798), 'created_at': datetime.datetime(2023, 4, 16, 22, 9, 2, 178722), 'buffer_idx': 1})] Virtual Time# Using some utils in LangChain, you can mock out the time component from langchain.utils import mock_now import datetime # Notice the last access time is that date time with mock_now(datetime.datetime(2011, 2, 3, 10, 11)): print(retriever.get_relevant_documents("hello world"))
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/time_weighted_vectorstore.html
3f4073807186-1
print(retriever.get_relevant_documents("hello world")) [Document(page_content='hello world', metadata={'last_accessed_at': MockDateTime(2011, 2, 3, 10, 11), 'created_at': datetime.datetime(2023, 5, 13, 21, 0, 27, 279596), 'buffer_idx': 0})] previous TF-IDF next VectorStore Contents Low Decay Rate High Decay Rate Virtual Time By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/time_weighted_vectorstore.html
88ecfcddccd5-0
.ipynb .pdf Weaviate Hybrid Search Weaviate Hybrid Search# Weaviate is an open source vector database. Hybrid search is a technique that combines multiple search algorithms to improve the accuracy and relevance of search results. It uses the best features of both keyword-based search algorithms with vector search techniques. The Hybrid search in Weaviate uses sparse and dense vectors to represent the meaning and context of search queries and documents. This notebook shows how to use Weaviate hybrid search as a LangChain retriever. Set up the retriever: #!pip install weaviate-client import weaviate import os WEAVIATE_URL = os.getenv("WEAVIATE_URL") client = weaviate.Client( url=WEAVIATE_URL, auth_client_secret=weaviate.AuthApiKey(api_key=os.getenv("WEAVIATE_API_KEY")), additional_headers={ "X-Openai-Api-Key": os.getenv("OPENAI_API_KEY"), }, ) # client.schema.delete_all() from langchain.retrievers.weaviate_hybrid_search import WeaviateHybridSearchRetriever from langchain.schema import Document /workspaces/langchain/langchain/vectorstores/analyticdb.py:20: MovedIn20Warning: The ``declarative_base()`` function is now available as sqlalchemy.orm.declarative_base(). (deprecated since: 2.0) (Background on SQLAlchemy 2.0 at: https://sqlalche.me/e/b8d9) Base = declarative_base() # type: Any retriever = WeaviateHybridSearchRetriever( client, index_name="LangChain", text_key="text" ) Add some data: docs = [ Document( metadata={ "title": "Embracing The Future: AI Unveiled", "author": "Dr. Rebecca Simmons", }, page_content="A comprehensive analysis of the evolution of artificial intelligence, from its inception to its future prospects. Dr. Simmons covers ethical considerations, potentials, and threats posed by AI.", ), Document( metadata={ "title": "Symbiosis: Harmonizing Humans and AI", "author": "Prof. Jonathan K. Sterling", }, page_content="Prof. Sterling explores the potential for harmonious coexistence between humans and artificial intelligence. The book discusses how AI can be integrated into society in a beneficial and non-disruptive manner.", ), Document( metadata={"title": "AI: The Ethical Quandary", "author": "Dr. Rebecca Simmons"}, page_content="In her second book, Dr. Simmons delves deeper into the ethical considerations surrounding AI development and deployment. It is an eye-opening examination of the dilemmas faced by developers, policymakers, and society at large.", ), Document( metadata={ "title": "Conscious Constructs: The Search for AI Sentience", "author": "Dr. Samuel Cortez", }, page_content="Dr. Cortez takes readers on a journey exploring the controversial topic of AI consciousness. The book provides compelling arguments for and against the possibility of true AI sentience.", ), Document( metadata={ "title": "Invisible Routines: Hidden AI in Everyday Life", "author": "Prof. Jonathan K. Sterling", }, page_content="In his follow-up to 'Symbiosis', Prof. Sterling takes a look at the subtle, unnoticed presence and influence of AI in our everyday lives. It reveals how AI has become woven into our routines, often without our explicit realization.", ), ] retriever.add_documents(docs) ['eda16d7d-437d-4613-84ae-c2e38705ec7a', '04b501bf-192b-4e72-be77-2fbbe7e67ebf', '18a1acdb-23b7-4482-ab04-a6c2ed51de77', '88e82cc3-c020-4b5a-b3c6-ca7cf3fc6a04', 'f6abd9d5-32ed-46c4-bd08-f8d0f7c9fc95'] Do a hybrid search: retriever.get_relevant_documents("the ethical implications of AI")
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/weaviate-hybrid.html
88ecfcddccd5-1
retriever.get_relevant_documents("the ethical implications of AI") [Document(page_content='In her second book, Dr. Simmons delves deeper into the ethical considerations surrounding AI development and deployment. It is an eye-opening examination of the dilemmas faced by developers, policymakers, and society at large.', metadata={}), Document(page_content='A comprehensive analysis of the evolution of artificial intelligence, from its inception to its future prospects. Dr. Simmons covers ethical considerations, potentials, and threats posed by AI.', metadata={}), Document(page_content="In his follow-up to 'Symbiosis', Prof. Sterling takes a look at the subtle, unnoticed presence and influence of AI in our everyday lives. It reveals how AI has become woven into our routines, often without our explicit realization.", metadata={}), Document(page_content='Prof. Sterling explores the potential for harmonious coexistence between humans and artificial intelligence. The book discusses how AI can be integrated into society in a beneficial and non-disruptive manner.', metadata={})] Do a hybrid search with where filter: retriever.get_relevant_documents( "AI integration in society", where_filter={ "path": ["author"], "operator": "Equal", "valueString": "Prof. Jonathan K. Sterling", }, ) [Document(page_content='Prof. Sterling explores the potential for harmonious coexistence between humans and artificial intelligence. The book discusses how AI can be integrated into society in a beneficial and non-disruptive manner.', metadata={}), Document(page_content="In his follow-up to 'Symbiosis', Prof. Sterling takes a look at the subtle, unnoticed presence and influence of AI in our everyday lives. It reveals how AI has become woven into our routines, often without our explicit realization.", metadata={})] previous Vespa next Self-querying with Weaviate By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/weaviate-hybrid.html
e1b8f6bbf8b0-0
.ipynb .pdf SVM Contents Create New Retriever with Texts Use Retriever SVM# Support vector machines (SVMs) are a set of supervised learning methods used for classification, regression and outliers detection. This notebook goes over how to use a retriever that under the hood uses an SVM using scikit-learn package. Largely based on https://github.com/karpathy/randomfun/blob/master/knn_vs_svm.ipynb #!pip install scikit-learn #!pip install lark We want to use OpenAIEmbeddings so we have to get the OpenAI API Key. import os import getpass os.environ['OPENAI_API_KEY'] = getpass.getpass('OpenAI API Key:') from langchain.retrievers import SVMRetriever from langchain.embeddings import OpenAIEmbeddings Create New Retriever with Texts# retriever = SVMRetriever.from_texts(["foo", "bar", "world", "hello", "foo bar"], OpenAIEmbeddings()) Use Retriever# We can now use the retriever! result = retriever.get_relevant_documents("foo") result [Document(page_content='foo', metadata={}), Document(page_content='foo bar', metadata={}), Document(page_content='hello', metadata={}), Document(page_content='world', metadata={})] previous Self-querying next TF-IDF Contents Create New Retriever with Texts Use Retriever By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/svm.html
2f2a65158de4-0
.ipynb .pdf Arxiv Contents Installation Examples Running retriever Question Answering on facts Arxiv# arXiv is an open-access archive for 2 million scholarly articles in the fields of physics, mathematics, computer science, quantitative biology, quantitative finance, statistics, electrical engineering and systems science, and economics. This notebook shows how to retrieve scientific articles from Arxiv.org into the Document format that is used downstream. Installation# First, you need to install arxiv python package. #!pip install arxiv ArxivRetriever has these arguments: optional load_max_docs: default=100. Use it to limit number of downloaded documents. It takes time to download all 100 documents, so use a small number for experiments. There is a hard limit of 300 for now. optional load_all_available_meta: default=False. By default only the most important fields downloaded: Published (date when document was published/last updated), Title, Authors, Summary. If True, other fields also downloaded. get_relevant_documents() has one argument, query: free text which used to find documents in Arxiv.org Examples# Running retriever# from langchain.retrievers import ArxivRetriever retriever = ArxivRetriever(load_max_docs=2) docs = retriever.get_relevant_documents(query='1605.08386') docs[0].metadata # meta-information of the Document {'Published': '2016-05-26', 'Title': 'Heat-bath random walks with Markov bases', 'Authors': 'Caprice Stanley, Tobias Windisch', 'Summary': 'Graphs on lattice points are studied whose edges come from a finite set of\nallowed moves of arbitrary length. We show that the diameter of these graphs on\nfibers of a fixed integer matrix can be bounded from above by a constant. We\nthen study the mixing behaviour of heat-bath random walks on these graphs. We\nalso state explicit conditions on the set of moves so that the heat-bath random\nwalk, a generalization of the Glauber dynamics, is an expander in fixed\ndimension.'} docs[0].page_content[:400] # a content of the Document 'arXiv:1605.08386v1 [math.CO] 26 May 2016\nHEAT-BATH RANDOM WALKS WITH MARKOV BASES\nCAPRICE STANLEY AND TOBIAS WINDISCH\nAbstract. Graphs on lattice points are studied whose edges come from a finite set of\nallowed moves of arbitrary length. We show that the diameter of these graphs on fibers of a\nfixed integer matrix can be bounded from above by a constant. We then study the mixing\nbehaviour of heat-b' Question Answering on facts# # get a token: https://platform.openai.com/account/api-keys from getpass import getpass OPENAI_API_KEY = getpass() import os os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY from langchain.chat_models import ChatOpenAI from langchain.chains import ConversationalRetrievalChain model = ChatOpenAI(model_name='gpt-3.5-turbo') # switch to 'gpt-4' qa = ConversationalRetrievalChain.from_llm(model,retriever=retriever) questions = [ "What are Heat-bath random walks with Markov base?", "What is the ImageBind model?", "How does Compositional Reasoning with Large Language Models works?", ] chat_history = [] for question in questions: result = qa({"question": question, "chat_history": chat_history}) chat_history.append((question, result['answer'])) print(f"-> **Question**: {question} \n") print(f"**Answer**: {result['answer']} \n") -> **Question**: What are Heat-bath random walks with Markov base? **Answer**: I'm not sure, as I don't have enough context to provide a definitive answer. The term "Heat-bath random walks with Markov base" is not mentioned in the given text. Could you provide more information or context about where you encountered this term? -> **Question**: What is the ImageBind model?
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/arxiv.html
2f2a65158de4-1
-> **Question**: What is the ImageBind model? **Answer**: ImageBind is an approach developed by Facebook AI Research to learn a joint embedding across six different modalities, including images, text, audio, depth, thermal, and IMU data. The approach uses the binding property of images to align each modality's embedding to image embeddings and achieve an emergent alignment across all modalities. This enables novel multimodal capabilities, including cross-modal retrieval, embedding-space arithmetic, and audio-to-image generation, among others. The approach sets a new state-of-the-art on emergent zero-shot recognition tasks across modalities, outperforming specialist supervised models. Additionally, it shows strong few-shot recognition results and serves as a new way to evaluate vision models for visual and non-visual tasks. -> **Question**: How does Compositional Reasoning with Large Language Models works? **Answer**: Compositional reasoning with large language models refers to the ability of these models to correctly identify and represent complex concepts by breaking them down into smaller, more basic parts and combining them in a structured way. This involves understanding the syntax and semantics of language and using that understanding to build up more complex meanings from simpler ones. In the context of the paper "Does CLIP Bind Concepts? Probing Compositionality in Large Image Models", the authors focus specifically on the ability of a large pretrained vision and language model (CLIP) to encode compositional concepts and to bind variables in a structure-sensitive way. They examine CLIP's ability to compose concepts in a single-object setting, as well as in situations where concept binding is needed. The authors situate their work within the tradition of research on compositional distributional semantics models (CDSMs), which seek to bridge the gap between distributional models and formal semantics by building architectures which operate over vectors yet still obey traditional theories of linguistic composition. They compare the performance of CLIP with several architectures from research on CDSMs to evaluate its ability to encode and reason about compositional concepts. questions = [ "What are Heat-bath random walks with Markov base? Include references to answer.", ] chat_history = [] for question in questions: result = qa({"question": question, "chat_history": chat_history}) chat_history.append((question, result['answer'])) print(f"-> **Question**: {question} \n") print(f"**Answer**: {result['answer']} \n") -> **Question**: What are Heat-bath random walks with Markov base? Include references to answer. **Answer**: Heat-bath random walks with Markov base (HB-MB) is a class of stochastic processes that have been studied in the field of statistical mechanics and condensed matter physics. In these processes, a particle moves in a lattice by making a transition to a neighboring site, which is chosen according to a probability distribution that depends on the energy of the particle and the energy of its surroundings. The HB-MB process was introduced by Bortz, Kalos, and Lebowitz in 1975 as a way to simulate the dynamics of interacting particles in a lattice at thermal equilibrium. The method has been used to study a variety of physical phenomena, including phase transitions, critical behavior, and transport properties. References: Bortz, A. B., Kalos, M. H., & Lebowitz, J. L. (1975). A new algorithm for Monte Carlo simulation of Ising spin systems. Journal of Computational Physics, 17(1), 10-18. Binder, K., & Heermann, D. W. (2010). Monte Carlo simulation in statistical physics: an introduction. Springer Science & Business Media. previous Retrievers next Azure Cognitive Search Contents Installation Examples Running retriever Question Answering on facts By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/arxiv.html
506c6a59f04b-0
.ipynb .pdf Self-querying with Qdrant Contents Creating a Qdrant vectorstore Creating our self-querying retriever Testing it out Filter k Self-querying with Qdrant# Qdrant (read: quadrant ) is a vector similarity search engine. It provides a production-ready service with a convenient API to store, search, and manage points - vectors with an additional payload. Qdrant is tailored to extended filtering support. It makes it useful In the notebook we’ll demo the SelfQueryRetriever wrapped around a Qdrant vector store. Creating a Qdrant vectorstore# First we’ll want to create a Chroma VectorStore and seed it with some data. We’ve created a small demo set of documents that contain summaries of movies. NOTE: The self-query retriever requires you to have lark installed (pip install lark). We also need the qdrant-client package. #!pip install lark qdrant-client We want to use OpenAIEmbeddings so we have to get the OpenAI API Key. # import os # import getpass # os.environ['OPENAI_API_KEY'] = getpass.getpass('OpenAI API Key:') from langchain.schema import Document from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import Qdrant embeddings = OpenAIEmbeddings() docs = [ Document(page_content="A bunch of scientists bring back dinosaurs and mayhem breaks loose", metadata={"year": 1993, "rating": 7.7, "genre": "science fiction"}), Document(page_content="Leo DiCaprio gets lost in a dream within a dream within a dream within a ...", metadata={"year": 2010, "director": "Christopher Nolan", "rating": 8.2}), Document(page_content="A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea", metadata={"year": 2006, "director": "Satoshi Kon", "rating": 8.6}), Document(page_content="A bunch of normal-sized women are supremely wholesome and some men pine after them", metadata={"year": 2019, "director": "Greta Gerwig", "rating": 8.3}), Document(page_content="Toys come alive and have a blast doing so", metadata={"year": 1995, "genre": "animated"}), Document(page_content="Three men walk into the Zone, three men walk out of the Zone", metadata={"year": 1979, "rating": 9.9, "director": "Andrei Tarkovsky", "genre": "science fiction", "rating": 9.9}) ] vectorstore = Qdrant.from_documents( docs, embeddings, location=":memory:", # Local mode with in-memory storage only collection_name="my_documents", ) Creating our self-querying retriever# Now we can instantiate our retriever. To do this we’ll need to provide some information upfront about the metadata fields that our documents support and a short description of the document contents. from langchain.llms import OpenAI from langchain.retrievers.self_query.base import SelfQueryRetriever from langchain.chains.query_constructor.base import AttributeInfo metadata_field_info=[ AttributeInfo( name="genre", description="The genre of the movie", type="string or list[string]", ), AttributeInfo( name="year", description="The year the movie was released", type="integer", ), AttributeInfo( name="director", description="The name of the movie director", type="string", ), AttributeInfo( name="rating", description="A 1-10 rating for the movie", type="float" ), ] document_content_description = "Brief summary of a movie" llm = OpenAI(temperature=0) retriever = SelfQueryRetriever.from_llm(llm, vectorstore, document_content_description, metadata_field_info, verbose=True) Testing it out# And now we can try actually using our retriever! # This example only specifies a relevant query retriever.get_relevant_documents("What are some movies about dinosaurs") query='dinosaur' filter=None limit=None
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/qdrant_self_query.html
506c6a59f04b-1
query='dinosaur' filter=None limit=None [Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'year': 1993, 'rating': 7.7, 'genre': 'science fiction'}), Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'}), Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'year': 1979, 'rating': 9.9, 'director': 'Andrei Tarkovsky', 'genre': 'science fiction'}), Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'year': 2006, 'director': 'Satoshi Kon', 'rating': 8.6})] # This example only specifies a filter retriever.get_relevant_documents("I want to watch a movie rated higher than 8.5") query=' ' filter=Comparison(comparator=<Comparator.GT: 'gt'>, attribute='rating', value=8.5) limit=None [Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'year': 1979, 'rating': 9.9, 'director': 'Andrei Tarkovsky', 'genre': 'science fiction'}), Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'year': 2006, 'director': 'Satoshi Kon', 'rating': 8.6})] # This example specifies a query and a filter retriever.get_relevant_documents("Has Greta Gerwig directed any movies about women") query='women' filter=Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='director', value='Greta Gerwig') limit=None [Document(page_content='A bunch of normal-sized women are supremely wholesome and some men pine after them', metadata={'year': 2019, 'director': 'Greta Gerwig', 'rating': 8.3})] # This example specifies a composite filter retriever.get_relevant_documents("What's a highly rated (above 8.5) science fiction film?") query=' ' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.GT: 'gt'>, attribute='rating', value=8.5), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='science fiction')]) limit=None [Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'year': 1979, 'rating': 9.9, 'director': 'Andrei Tarkovsky', 'genre': 'science fiction'})] # This example specifies a query and composite filter retriever.get_relevant_documents("What's a movie after 1990 but before 2005 that's all about toys, and preferably is animated") query='toys' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.GT: 'gt'>, attribute='year', value=1990), Comparison(comparator=<Comparator.LT: 'lt'>, attribute='year', value=2005), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='animated')]) limit=None [Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'})] Filter k# We can also use the self query retriever to specify k: the number of documents to fetch. We can do this by passing enable_limit=True to the constructor. retriever = SelfQueryRetriever.from_llm( llm, vectorstore, document_content_description, metadata_field_info, enable_limit=True, verbose=True ) # This example only specifies a relevant query retriever.get_relevant_documents("what are two movies about dinosaurs") query='dinosaur' filter=None limit=2 [Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'year': 1993, 'rating': 7.7, 'genre': 'science fiction'}), Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'})] previous PubMed Retriever next Self-querying
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/qdrant_self_query.html
506c6a59f04b-2
previous PubMed Retriever next Self-querying Contents Creating a Qdrant vectorstore Creating our self-querying retriever Testing it out Filter k By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/qdrant_self_query.html
0a1209deab2b-0
.ipynb .pdf Pinecone Hybrid Search Contents Setup Pinecone Get embeddings and sparse encoders Load Retriever Add texts (if necessary) Use Retriever Pinecone Hybrid Search# Pinecone is a vector database with broad functionality. This notebook goes over how to use a retriever that under the hood uses Pinecone and Hybrid Search. The logic of this retriever is taken from this documentaion To use Pinecone, you must have an API key and an Environment. Here are the installation instructions. #!pip install pinecone-client pinecone-text import os import getpass os.environ['PINECONE_API_KEY'] = getpass.getpass('Pinecone API Key:') from langchain.retrievers import PineconeHybridSearchRetriever os.environ['PINECONE_ENVIRONMENT'] = getpass.getpass('Pinecone Environment:') We want to use OpenAIEmbeddings so we have to get the OpenAI API Key. os.environ['OPENAI_API_KEY'] = getpass.getpass('OpenAI API Key:') Setup Pinecone# You should only have to do this part once. Note: it’s important to make sure that the “context” field that holds the document text in the metadata is not indexed. Currently you need to specify explicitly the fields you do want to index. For more information checkout Pinecone’s docs. import os import pinecone api_key = os.getenv("PINECONE_API_KEY") or "PINECONE_API_KEY" # find environment next to your API key in the Pinecone console env = os.getenv("PINECONE_ENVIRONMENT") or "PINECONE_ENVIRONMENT" index_name = "langchain-pinecone-hybrid-search" pinecone.init(api_key=api_key, enviroment=env) pinecone.whoami() WhoAmIResponse(username='load', user_label='label', projectname='load-test') # create the index pinecone.create_index( name = index_name, dimension = 1536, # dimensionality of dense model metric = "dotproduct", # sparse values supported only for dotproduct pod_type = "s1", metadata_config={"indexed": []} # see explaination above ) Now that its created, we can use it index = pinecone.Index(index_name) Get embeddings and sparse encoders# Embeddings are used for the dense vectors, tokenizer is used for the sparse vector from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() To encode the text to sparse values you can either choose SPLADE or BM25. For out of domain tasks we recommend using BM25. For more information about the sparse encoders you can checkout pinecone-text library docs. from pinecone_text.sparse import BM25Encoder # or from pinecone_text.sparse import SpladeEncoder if you wish to work with SPLADE # use default tf-idf values bm25_encoder = BM25Encoder().default() The above code is using default tfids values. It’s highly recommended to fit the tf-idf values to your own corpus. You can do it as follow: corpus = ["foo", "bar", "world", "hello"] # fit tf-idf values on your corpus bm25_encoder.fit(corpus) # store the values to a json file bm25_encoder.dump("bm25_values.json") # load to your BM25Encoder object bm25_encoder = BM25Encoder().load("bm25_values.json") Load Retriever# We can now construct the retriever! retriever = PineconeHybridSearchRetriever(embeddings=embeddings, sparse_encoder=bm25_encoder, index=index) Add texts (if necessary)# We can optionally add texts to the retriever (if they aren’t already in there) retriever.add_texts(["foo", "bar", "world", "hello"]) 100%|██████████| 1/1 [00:02<00:00, 2.27s/it] Use Retriever# We can now use the retriever! result = retriever.get_relevant_documents("foo") result[0] Document(page_content='foo', metadata={}) previous Metal next PubMed Retriever Contents Setup Pinecone Get embeddings and sparse encoders Load Retriever Add texts (if necessary) Use Retriever By Harrison Chase © Copyright 2023, Harrison Chase.
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/pinecone_hybrid_search.html
0a1209deab2b-1
By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/pinecone_hybrid_search.html
ca67590cf6d4-0
.ipynb .pdf Self-querying Contents Creating a Pinecone index Creating our self-querying retriever Testing it out Filter k Self-querying# In the notebook we’ll demo the SelfQueryRetriever, which, as the name suggests, has the ability to query itself. Specifically, given any natural language query, the retriever uses a query-constructing LLM chain to write a structured query and then applies that structured query to it’s underlying VectorStore. This allows the retriever to not only use the user-input query for semantic similarity comparison with the contents of stored documented, but to also extract filters from the user query on the metadata of stored documents and to execute those filters. Creating a Pinecone index# First we’ll want to create a Pinecone VectorStore and seed it with some data. We’ve created a small demo set of documents that contain summaries of movies. To use Pinecone, you to have pinecone package installed and you must have an API key and an Environment. Here are the installation instructions. NOTE: The self-query retriever requires you to have lark package installed. # !pip install lark #!pip install pinecone-client import os import pinecone pinecone.init(api_key=os.environ["PINECONE_API_KEY"], environment=os.environ["PINECONE_ENV"]) /Users/harrisonchase/.pyenv/versions/3.9.1/envs/langchain/lib/python3.9/site-packages/pinecone/index.py:4: TqdmExperimentalWarning: Using `tqdm.autonotebook.tqdm` in notebook mode. Use `tqdm.tqdm` instead to force console mode (e.g. in jupyter console) from tqdm.autonotebook import tqdm from langchain.schema import Document from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import Pinecone embeddings = OpenAIEmbeddings() # create new index pinecone.create_index("langchain-self-retriever-demo", dimension=1536) docs = [ Document(page_content="A bunch of scientists bring back dinosaurs and mayhem breaks loose", metadata={"year": 1993, "rating": 7.7, "genre": ["action", "science fiction"]}), Document(page_content="Leo DiCaprio gets lost in a dream within a dream within a dream within a ...", metadata={"year": 2010, "director": "Christopher Nolan", "rating": 8.2}), Document(page_content="A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea", metadata={"year": 2006, "director": "Satoshi Kon", "rating": 8.6}), Document(page_content="A bunch of normal-sized women are supremely wholesome and some men pine after them", metadata={"year": 2019, "director": "Greta Gerwig", "rating": 8.3}), Document(page_content="Toys come alive and have a blast doing so", metadata={"year": 1995, "genre": "animated"}), Document(page_content="Three men walk into the Zone, three men walk out of the Zone", metadata={"year": 1979, "rating": 9.9, "director": "Andrei Tarkovsky", "genre": ["science fiction", "thriller"], "rating": 9.9}) ] vectorstore = Pinecone.from_documents( docs, embeddings, index_name="langchain-self-retriever-demo" ) Creating our self-querying retriever# Now we can instantiate our retriever. To do this we’ll need to provide some information upfront about the metadata fields that our documents support and a short description of the document contents. from langchain.llms import OpenAI from langchain.retrievers.self_query.base import SelfQueryRetriever from langchain.chains.query_constructor.base import AttributeInfo metadata_field_info=[ AttributeInfo( name="genre", description="The genre of the movie", type="string or list[string]", ), AttributeInfo( name="year", description="The year the movie was released", type="integer", ), AttributeInfo( name="director", description="The name of the movie director", type="string", ), AttributeInfo( name="rating", description="A 1-10 rating for the movie", type="float" ), ]
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/self_query.html
ca67590cf6d4-1
type="float" ), ] document_content_description = "Brief summary of a movie" llm = OpenAI(temperature=0) retriever = SelfQueryRetriever.from_llm(llm, vectorstore, document_content_description, metadata_field_info, verbose=True) Testing it out# And now we can try actually using our retriever! # This example only specifies a relevant query retriever.get_relevant_documents("What are some movies about dinosaurs") query='dinosaur' filter=None [Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'genre': ['action', 'science fiction'], 'rating': 7.7, 'year': 1993.0}), Document(page_content='Toys come alive and have a blast doing so', metadata={'genre': 'animated', 'year': 1995.0}), Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'director': 'Satoshi Kon', 'rating': 8.6, 'year': 2006.0}), Document(page_content='Leo DiCaprio gets lost in a dream within a dream within a dream within a ...', metadata={'director': 'Christopher Nolan', 'rating': 8.2, 'year': 2010.0})] # This example only specifies a filter retriever.get_relevant_documents("I want to watch a movie rated higher than 8.5") query=' ' filter=Comparison(comparator=<Comparator.GT: 'gt'>, attribute='rating', value=8.5) [Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'director': 'Satoshi Kon', 'rating': 8.6, 'year': 2006.0}), Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'director': 'Andrei Tarkovsky', 'genre': ['science fiction', 'thriller'], 'rating': 9.9, 'year': 1979.0})] # This example specifies a query and a filter retriever.get_relevant_documents("Has Greta Gerwig directed any movies about women") query='women' filter=Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='director', value='Greta Gerwig') [Document(page_content='A bunch of normal-sized women are supremely wholesome and some men pine after them', metadata={'director': 'Greta Gerwig', 'rating': 8.3, 'year': 2019.0})] # This example specifies a composite filter retriever.get_relevant_documents("What's a highly rated (above 8.5) science fiction film?") query=' ' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='science fiction'), Comparison(comparator=<Comparator.GT: 'gt'>, attribute='rating', value=8.5)]) [Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'director': 'Andrei Tarkovsky', 'genre': ['science fiction', 'thriller'], 'rating': 9.9, 'year': 1979.0})] # This example specifies a query and composite filter retriever.get_relevant_documents("What's a movie after 1990 but before 2005 that's all about toys, and preferably is animated") query='toys' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.GT: 'gt'>, attribute='year', value=1990.0), Comparison(comparator=<Comparator.LT: 'lt'>, attribute='year', value=2005.0), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='animated')]) [Document(page_content='Toys come alive and have a blast doing so', metadata={'genre': 'animated', 'year': 1995.0})] Filter k# We can also use the self query retriever to specify k: the number of documents to fetch. We can do this by passing enable_limit=True to the constructor. retriever = SelfQueryRetriever.from_llm( llm, vectorstore, document_content_description, metadata_field_info, enable_limit=True, verbose=True )
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/self_query.html
ca67590cf6d4-2
metadata_field_info, enable_limit=True, verbose=True ) # This example only specifies a relevant query retriever.get_relevant_documents("What are two movies about dinosaurs") previous Self-querying with Qdrant next SVM Contents Creating a Pinecone index Creating our self-querying retriever Testing it out Filter k By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/self_query.html
4d3f43d11cdb-0
.ipynb .pdf Self-querying with Chroma Contents Creating a Chroma vectorstore Creating our self-querying retriever Testing it out Filter k Self-querying with Chroma# Chroma is a database for building AI applications with embeddings. In the notebook we’ll demo the SelfQueryRetriever wrapped around a Chroma vector store. Creating a Chroma vectorstore# First we’ll want to create a Chroma VectorStore and seed it with some data. We’ve created a small demo set of documents that contain summaries of movies. NOTE: The self-query retriever requires you to have lark installed (pip install lark). We also need the chromadb package. #!pip install lark #!pip install chromadb We want to use OpenAIEmbeddings so we have to get the OpenAI API Key. import os import getpass os.environ['OPENAI_API_KEY'] = getpass.getpass('OpenAI API Key:') from langchain.schema import Document from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import Chroma embeddings = OpenAIEmbeddings() docs = [ Document(page_content="A bunch of scientists bring back dinosaurs and mayhem breaks loose", metadata={"year": 1993, "rating": 7.7, "genre": "science fiction"}), Document(page_content="Leo DiCaprio gets lost in a dream within a dream within a dream within a ...", metadata={"year": 2010, "director": "Christopher Nolan", "rating": 8.2}), Document(page_content="A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea", metadata={"year": 2006, "director": "Satoshi Kon", "rating": 8.6}), Document(page_content="A bunch of normal-sized women are supremely wholesome and some men pine after them", metadata={"year": 2019, "director": "Greta Gerwig", "rating": 8.3}), Document(page_content="Toys come alive and have a blast doing so", metadata={"year": 1995, "genre": "animated"}), Document(page_content="Three men walk into the Zone, three men walk out of the Zone", metadata={"year": 1979, "rating": 9.9, "director": "Andrei Tarkovsky", "genre": "science fiction", "rating": 9.9}) ] vectorstore = Chroma.from_documents( docs, embeddings ) Using embedded DuckDB without persistence: data will be transient Creating our self-querying retriever# Now we can instantiate our retriever. To do this we’ll need to provide some information upfront about the metadata fields that our documents support and a short description of the document contents. from langchain.llms import OpenAI from langchain.retrievers.self_query.base import SelfQueryRetriever from langchain.chains.query_constructor.base import AttributeInfo metadata_field_info=[ AttributeInfo( name="genre", description="The genre of the movie", type="string or list[string]", ), AttributeInfo( name="year", description="The year the movie was released", type="integer", ), AttributeInfo( name="director", description="The name of the movie director", type="string", ), AttributeInfo( name="rating", description="A 1-10 rating for the movie", type="float" ), ] document_content_description = "Brief summary of a movie" llm = OpenAI(temperature=0) retriever = SelfQueryRetriever.from_llm(llm, vectorstore, document_content_description, metadata_field_info, verbose=True) Testing it out# And now we can try actually using our retriever! # This example only specifies a relevant query retriever.get_relevant_documents("What are some movies about dinosaurs") query='dinosaur' filter=None [Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'year': 1993, 'rating': 7.7, 'genre': 'science fiction'}), Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'}),
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/chroma_self_query.html
4d3f43d11cdb-1
Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'year': 2006, 'director': 'Satoshi Kon', 'rating': 8.6}), Document(page_content='Leo DiCaprio gets lost in a dream within a dream within a dream within a ...', metadata={'year': 2010, 'director': 'Christopher Nolan', 'rating': 8.2})] # This example only specifies a filter retriever.get_relevant_documents("I want to watch a movie rated higher than 8.5") query=' ' filter=Comparison(comparator=<Comparator.GT: 'gt'>, attribute='rating', value=8.5) [Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'year': 2006, 'director': 'Satoshi Kon', 'rating': 8.6}), Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'year': 1979, 'rating': 9.9, 'director': 'Andrei Tarkovsky', 'genre': 'science fiction'})] # This example specifies a query and a filter retriever.get_relevant_documents("Has Greta Gerwig directed any movies about women") query='women' filter=Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='director', value='Greta Gerwig') [Document(page_content='A bunch of normal-sized women are supremely wholesome and some men pine after them', metadata={'year': 2019, 'director': 'Greta Gerwig', 'rating': 8.3})] # This example specifies a composite filter retriever.get_relevant_documents("What's a highly rated (above 8.5) science fiction film?") query=' ' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='science fiction'), Comparison(comparator=<Comparator.GT: 'gt'>, attribute='rating', value=8.5)]) [Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'year': 1979, 'rating': 9.9, 'director': 'Andrei Tarkovsky', 'genre': 'science fiction'})] # This example specifies a query and composite filter retriever.get_relevant_documents("What's a movie after 1990 but before 2005 that's all about toys, and preferably is animated") query='toys' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.GT: 'gt'>, attribute='year', value=1990), Comparison(comparator=<Comparator.LT: 'lt'>, attribute='year', value=2005), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='animated')]) [Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'})] Filter k# We can also use the self query retriever to specify k: the number of documents to fetch. We can do this by passing enable_limit=True to the constructor. retriever = SelfQueryRetriever.from_llm( llm, vectorstore, document_content_description, metadata_field_info, enable_limit=True, verbose=True ) # This example only specifies a relevant query retriever.get_relevant_documents("what are two movies about dinosaurs") query='dinosaur' filter=None [Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'year': 1993, 'rating': 7.7, 'genre': 'science fiction'}), Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'}), Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'year': 2006, 'director': 'Satoshi Kon', 'rating': 8.6}), Document(page_content='Leo DiCaprio gets lost in a dream within a dream within a dream within a ...', metadata={'year': 2010, 'director': 'Christopher Nolan', 'rating': 8.2})] previous ChatGPT Plugin next Cohere Reranker
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/chroma_self_query.html
4d3f43d11cdb-2
previous ChatGPT Plugin next Cohere Reranker Contents Creating a Chroma vectorstore Creating our self-querying retriever Testing it out Filter k By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/chroma_self_query.html
2fe231df2319-0
.ipynb .pdf kNN Contents Create New Retriever with Texts Use Retriever kNN# In statistics, the k-nearest neighbors algorithm (k-NN) is a non-parametric supervised learning method first developed by Evelyn Fix and Joseph Hodges in 1951, and later expanded by Thomas Cover. It is used for classification and regression. This notebook goes over how to use a retriever that under the hood uses an kNN. Largely based on https://github.com/karpathy/randomfun/blob/master/knn_vs_svm.ipynb from langchain.retrievers import KNNRetriever from langchain.embeddings import OpenAIEmbeddings Create New Retriever with Texts# retriever = KNNRetriever.from_texts(["foo", "bar", "world", "hello", "foo bar"], OpenAIEmbeddings()) Use Retriever# We can now use the retriever! result = retriever.get_relevant_documents("foo") result [Document(page_content='foo', metadata={}), Document(page_content='foo bar', metadata={}), Document(page_content='hello', metadata={}), Document(page_content='bar', metadata={})] previous ElasticSearch BM25 next Metal Contents Create New Retriever with Texts Use Retriever By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/knn.html
4622b6704dbb-0
.ipynb .pdf PubMed Retriever PubMed Retriever# This notebook goes over how to use PubMed as a retriever PubMed® comprises more than 35 million citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full text content from PubMed Central and publisher web sites. from langchain.retrievers import PubMedRetriever retriever = PubMedRetriever() retriever.get_relevant_documents("chatgpt") [Document(page_content='', metadata={'uid': '37268021', 'title': 'Dermatology in the wake of an AI revolution: who gets a say?', 'pub_date': '<Year>2023</Year><Month>May</Month><Day>31</Day>'}), Document(page_content='', metadata={'uid': '37267643', 'title': 'What is ChatGPT and what do we do with it? Implications of the age of AI for nursing and midwifery practice and education: An editorial.', 'pub_date': '<Year>2023</Year><Month>May</Month><Day>30</Day>'}), Document(page_content='The nursing field has undergone notable changes over time and is projected to undergo further modifications in the future, owing to the advent of sophisticated technologies and growing healthcare needs. The advent of ChatGPT, an AI-powered language model, is expected to exert a significant influence on the nursing profession, specifically in the domains of patient care and instruction. The present article delves into the ramifications of ChatGPT within the nursing domain and accentuates its capacity and constraints to transform the discipline.', metadata={'uid': '37266721', 'title': 'The Impact of ChatGPT on the Nursing Profession: Revolutionizing Patient Care and Education.', 'pub_date': '<Year>2023</Year><Month>Jun</Month><Day>02</Day>'})] previous Pinecone Hybrid Search next Self-querying with Qdrant By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/pubmed.html
db164f844f70-0
.ipynb .pdf ElasticSearch BM25 Contents Create New Retriever Add texts (if necessary) Use Retriever ElasticSearch BM25# Elasticsearch is a distributed, RESTful search and analytics engine. It provides a distributed, multitenant-capable full-text search engine with an HTTP web interface and schema-free JSON documents. In information retrieval, Okapi BM25 (BM is an abbreviation of best matching) is a ranking function used by search engines to estimate the relevance of documents to a given search query. It is based on the probabilistic retrieval framework developed in the 1970s and 1980s by Stephen E. Robertson, Karen Spärck Jones, and others. The name of the actual ranking function is BM25. The fuller name, Okapi BM25, includes the name of the first system to use it, which was the Okapi information retrieval system, implemented at London’s City University in the 1980s and 1990s. BM25 and its newer variants, e.g. BM25F (a version of BM25 that can take document structure and anchor text into account), represent TF-IDF-like retrieval functions used in document retrieval. This notebook shows how to use a retriever that uses ElasticSearch and BM25. For more information on the details of BM25 see this blog post. #!pip install elasticsearch from langchain.retrievers import ElasticSearchBM25Retriever Create New Retriever# elasticsearch_url="http://localhost:9200" retriever = ElasticSearchBM25Retriever.create(elasticsearch_url, "langchain-index-4") # Alternatively, you can load an existing index # import elasticsearch # elasticsearch_url="http://localhost:9200" # retriever = ElasticSearchBM25Retriever(elasticsearch.Elasticsearch(elasticsearch_url), "langchain-index") Add texts (if necessary)# We can optionally add texts to the retriever (if they aren’t already in there) retriever.add_texts(["foo", "bar", "world", "hello", "foo bar"]) ['cbd4cb47-8d9f-4f34-b80e-ea871bc49856', 'f3bd2e24-76d1-4f9b-826b-ec4c0e8c7365', '8631bfc8-7c12-48ee-ab56-8ad5f373676e', '8be8374c-3253-4d87-928d-d73550a2ecf0', 'd79f457b-2842-4eab-ae10-77aa420b53d7'] Use Retriever# We can now use the retriever! result = retriever.get_relevant_documents("foo") result [Document(page_content='foo', metadata={}), Document(page_content='foo bar', metadata={})] previous Databerry next kNN Contents Create New Retriever Add texts (if necessary) Use Retriever By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/elastic_search_bm25.html
dd3414e03431-0
.ipynb .pdf TF-IDF Contents Create New Retriever with Texts Create a New Retriever with Documents Use Retriever TF-IDF# TF-IDF means term-frequency times inverse document-frequency. This notebook goes over how to use a retriever that under the hood uses TF-IDF using scikit-learn package. For more information on the details of TF-IDF see this blog post. # !pip install scikit-learn from langchain.retrievers import TFIDFRetriever Create New Retriever with Texts# retriever = TFIDFRetriever.from_texts(["foo", "bar", "world", "hello", "foo bar"]) Create a New Retriever with Documents# You can now create a new retriever with the documents you created. from langchain.schema import Document retriever = TFIDFRetriever.from_documents([Document(page_content="foo"), Document(page_content="bar"), Document(page_content="world"), Document(page_content="hello"), Document(page_content="foo bar")]) Use Retriever# We can now use the retriever! result = retriever.get_relevant_documents("foo") result [Document(page_content='foo', metadata={}), Document(page_content='foo bar', metadata={}), Document(page_content='hello', metadata={}), Document(page_content='world', metadata={})] previous SVM next Time Weighted VectorStore Contents Create New Retriever with Texts Create a New Retriever with Documents Use Retriever By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/tf_idf.html
0fb76a0e9b89-0
.ipynb .pdf Cohere Reranker Contents Set up the base vector store retriever Doing reranking with CohereRerank Cohere Reranker# Cohere is a Canadian startup that provides natural language processing models that help companies improve human-machine interactions. This notebook shows how to use Cohere’s rerank endpoint in a retriever. This builds on top of ideas in the ContextualCompressionRetriever. #!pip install cohere #!pip install faiss # OR (depending on Python version) #!pip install faiss-cpu # get a new token: https://dashboard.cohere.ai/ import os import getpass os.environ['COHERE_API_KEY'] = getpass.getpass('Cohere API Key:') os.environ['OPENAI_API_KEY'] = getpass.getpass('OpenAI API Key:') # Helper function for printing docs def pretty_print_docs(docs): print(f"\n{'-' * 100}\n".join([f"Document {i+1}:\n\n" + d.page_content for i, d in enumerate(docs)])) Set up the base vector store retriever# Let’s start by initializing a simple vector store retriever and storing the 2023 State of the Union speech (in chunks). We can set up the retriever to retrieve a high number (20) of docs. from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import OpenAIEmbeddings from langchain.document_loaders import TextLoader from langchain.vectorstores import FAISS documents = TextLoader('../../../state_of_the_union.txt').load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100) texts = text_splitter.split_documents(documents) retriever = FAISS.from_documents(texts, OpenAIEmbeddings()).as_retriever(search_kwargs={"k": 20}) query = "What did the president say about Ketanji Brown Jackson" docs = retriever.get_relevant_documents(query) pretty_print_docs(docs) Document 1: One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence. ---------------------------------------------------------------------------------------------------- Document 2: As I said last year, especially to our younger transgender Americans, I will always have your back as your President, so you can be yourself and reach your God-given potential. While it often appears that we never agree, that isn’t true. I signed 80 bipartisan bills into law last year. From preventing government shutdowns to protecting Asian-Americans from still-too-common hate crimes to reforming military justice. ---------------------------------------------------------------------------------------------------- Document 3: A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since she’s been nominated, she’s received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. And if we are to advance liberty and justice, we need to secure the Border and fix the immigration system. ---------------------------------------------------------------------------------------------------- Document 4: He met the Ukrainian people. From President Zelenskyy to every Ukrainian, their fearlessness, their courage, their determination, inspires the world. Groups of citizens blocking tanks with their bodies. Everyone from students to retirees teachers turned soldiers defending their homeland. In this struggle as President Zelenskyy said in his speech to the European Parliament “Light will win over darkness.” The Ukrainian Ambassador to the United States is here tonight. ---------------------------------------------------------------------------------------------------- Document 5: I spoke with their families and told them that we are forever in debt for their sacrifice, and we will carry on their mission to restore the trust and safety every community deserves. I’ve worked on these issues a long time. I know what works: Investing in crime preventionand community police officers who’ll walk the beat, who’ll know the neighborhood, and who can restore trust and safety. So let’s not abandon our streets. Or choose between safety and equal justice. ---------------------------------------------------------------------------------------------------- Document 6: Vice President Harris and I ran for office with a new economic vision for America. Invest in America. Educate Americans. Grow the workforce. Build the economy from the bottom up and the middle out, not from the top down.
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/cohere-reranker.html
0fb76a0e9b89-1
and the middle out, not from the top down. Because we know that when the middle class grows, the poor have a ladder up and the wealthy do very well. America used to have the best roads, bridges, and airports on Earth. Now our infrastructure is ranked 13th in the world. ---------------------------------------------------------------------------------------------------- Document 7: And tonight, I’m announcing that the Justice Department will name a chief prosecutor for pandemic fraud. By the end of this year, the deficit will be down to less than half what it was before I took office. The only president ever to cut the deficit by more than one trillion dollars in a single year. Lowering your costs also means demanding more competition. I’m a capitalist, but capitalism without competition isn’t capitalism. It’s exploitation—and it drives up prices. ---------------------------------------------------------------------------------------------------- Document 8: For the past 40 years we were told that if we gave tax breaks to those at the very top, the benefits would trickle down to everyone else. But that trickle-down theory led to weaker economic growth, lower wages, bigger deficits, and the widest gap between those at the top and everyone else in nearly a century. Vice President Harris and I ran for office with a new economic vision for America. ---------------------------------------------------------------------------------------------------- Document 9: All told, we created 369,000 new manufacturing jobs in America just last year. Powered by people I’ve met like JoJo Burgess, from generations of union steelworkers from Pittsburgh, who’s here with us tonight. As Ohio Senator Sherrod Brown says, “It’s time to bury the label “Rust Belt.” It’s time. But with all the bright spots in our economy, record job growth and higher wages, too many families are struggling to keep up with the bills. ---------------------------------------------------------------------------------------------------- Document 10: I’m also calling on Congress: pass a law to make sure veterans devastated by toxic exposures in Iraq and Afghanistan finally get the benefits and comprehensive health care they deserve. And fourth, let’s end cancer as we know it. This is personal to me and Jill, to Kamala, and to so many of you. Cancer is the #2 cause of death in America–second only to heart disease. ---------------------------------------------------------------------------------------------------- Document 11: He will never extinguish their love of freedom. He will never weaken the resolve of the free world. We meet tonight in an America that has lived through two of the hardest years this nation has ever faced. The pandemic has been punishing. And so many families are living paycheck to paycheck, struggling to keep up with the rising cost of food, gas, housing, and so much more. I understand. ---------------------------------------------------------------------------------------------------- Document 12: Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans. Last year COVID-19 kept us apart. This year we are finally together again. Tonight, we meet as Democrats Republicans and Independents. But most importantly as Americans. With a duty to one another to the American people to the Constitution. And with an unwavering resolve that freedom will always triumph over tyranny. ---------------------------------------------------------------------------------------------------- Document 13: I know. One of those soldiers was my son Major Beau Biden. We don’t know for sure if a burn pit was the cause of his brain cancer, or the diseases of so many of our troops. But I’m committed to finding out everything we can. Committed to military families like Danielle Robinson from Ohio. The widow of Sergeant First Class Heath Robinson. He was born a soldier. Army National Guard. Combat medic in Kosovo and Iraq. ---------------------------------------------------------------------------------------------------- Document 14: And soon, we’ll strengthen the Violence Against Women Act that I first wrote three decades ago. It is important for us to show the nation that we can come together and do big things. So tonight I’m offering a Unity Agenda for the Nation. Four big things we can do together. First, beat the opioid epidemic. There is so much we can do. Increase funding for prevention, treatment, harm reduction, and recovery. ---------------------------------------------------------------------------------------------------- Document 15: Third, support our veterans. Veterans are the best of us. I’ve always believed that we have a sacred obligation to equip all those we send to war and care for them and their families when they come home. My administration is providing assistance with job training and housing, and now helping lower-income veterans get VA care debt-free.
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/cohere-reranker.html
0fb76a0e9b89-2
Our troops in Iraq and Afghanistan faced many dangers. ---------------------------------------------------------------------------------------------------- Document 16: When we invest in our workers, when we build the economy from the bottom up and the middle out together, we can do something we haven’t done in a long time: build a better America. For more than two years, COVID-19 has impacted every decision in our lives and the life of the nation. And I know you’re tired, frustrated, and exhausted. But I also know this. ---------------------------------------------------------------------------------------------------- Document 17: Now is the hour. Our moment of responsibility. Our test of resolve and conscience, of history itself. It is in this moment that our character is formed. Our purpose is found. Our future is forged. Well I know this nation. We will meet the test. To protect freedom and liberty, to expand fairness and opportunity. We will save democracy. As hard as these times have been, I am more optimistic about America today than I have been my whole life. ---------------------------------------------------------------------------------------------------- Document 18: He didn’t know how to stop fighting, and neither did she. Through her pain she found purpose to demand we do better. Tonight, Danielle—we are. The VA is pioneering new ways of linking toxic exposures to diseases, already helping more veterans get benefits. And tonight, I’m announcing we’re expanding eligibility to veterans suffering from nine respiratory cancers. ---------------------------------------------------------------------------------------------------- Document 19: I understand. I remember when my Dad had to leave our home in Scranton, Pennsylvania to find work. I grew up in a family where if the price of food went up, you felt it. That’s why one of the first things I did as President was fight to pass the American Rescue Plan. Because people were hurting. We needed to act, and we did. Few pieces of legislation have done more in a critical moment in our history to lift us out of crisis. ---------------------------------------------------------------------------------------------------- Document 20: So let’s not abandon our streets. Or choose between safety and equal justice. Let’s come together to protect our communities, restore trust, and hold law enforcement accountable. That’s why the Justice Department required body cameras, banned chokeholds, and restricted no-knock warrants for its officers. Doing reranking with CohereRerank# Now let’s wrap our base retriever with a ContextualCompressionRetriever. We’ll add an CohereRerank, uses the Cohere rerank endpoint to rerank the returned results. from langchain.llms import OpenAI from langchain.retrievers import ContextualCompressionRetriever from langchain.retrievers.document_compressors import CohereRerank llm = OpenAI(temperature=0) compressor = CohereRerank() compression_retriever = ContextualCompressionRetriever(base_compressor=compressor, base_retriever=retriever) compressed_docs = compression_retriever.get_relevant_documents("What did the president say about Ketanji Jackson Brown") pretty_print_docs(compressed_docs) Document 1: One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence. ---------------------------------------------------------------------------------------------------- Document 2: I spoke with their families and told them that we are forever in debt for their sacrifice, and we will carry on their mission to restore the trust and safety every community deserves. I’ve worked on these issues a long time. I know what works: Investing in crime preventionand community police officers who’ll walk the beat, who’ll know the neighborhood, and who can restore trust and safety. So let’s not abandon our streets. Or choose between safety and equal justice. ---------------------------------------------------------------------------------------------------- Document 3: A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since she’s been nominated, she’s received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. And if we are to advance liberty and justice, we need to secure the Border and fix the immigration system. You can of course use this retriever within a QA pipeline from langchain.chains import RetrievalQA chain = RetrievalQA.from_chain_type(llm=OpenAI(temperature=0), retriever=compression_retriever)
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/cohere-reranker.html
0fb76a0e9b89-3
chain({"query": query}) {'query': 'What did the president say about Ketanji Brown Jackson', 'result': " The president said that Ketanji Brown Jackson is one of the nation's top legal minds and that she is a consensus builder who has received a broad range of support from the Fraternal Order of Police to former judges appointed by Democrats and Republicans."} previous Self-querying with Chroma next Contextual Compression Contents Set up the base vector store retriever Doing reranking with CohereRerank By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/cohere-reranker.html
0cf09c7922d0-0
.ipynb .pdf Databerry Contents Query Databerry# Databerry platform brings data from anywhere (Datsources: Text, PDF, Word, PowerPpoint, Excel, Notion, Airtable, Google Sheets, etc..) into Datastores (container of multiple Datasources). Then your Datastores can be connected to ChatGPT via Plugins or any other Large Langue Model (LLM) via the Databerry API. This notebook shows how to use Databerry’s retriever. First, you will need to sign up for Databerry, create a datastore, add some data and get your datastore api endpoint url. You need the API Key. Query# Now that our index is set up, we can set up a retriever and start querying it. from langchain.retrievers import DataberryRetriever retriever = DataberryRetriever( datastore_url="https://clg1xg2h80000l708dymr0fxc.databerry.ai/query", # api_key="DATABERRY_API_KEY", # optional if datastore is public # top_k=10 # optional ) retriever.get_relevant_documents("What is Daftpage?") [Document(page_content='✨ Made with DaftpageOpen main menuPricingTemplatesLoginSearchHelpGetting StartedFeaturesAffiliate ProgramGetting StartedDaftpage is a new type of website builder that works like a doc.It makes website building easy, fun and offers tons of powerful features for free. Just type / in your page to get started!DaftpageCopyright © 2022 Daftpage, Inc.All rights reserved.ProductPricingTemplatesHelp & SupportHelp CenterGetting startedBlogCompanyAboutRoadmapTwitterAffiliate Program👾 Discord', metadata={'source': 'https:/daftpage.com/help/getting-started', 'score': 0.8697265}), Document(page_content="✨ Made with DaftpageOpen main menuPricingTemplatesLoginSearchHelpGetting StartedFeaturesAffiliate ProgramHelp CenterWelcome to Daftpage’s help center—the one-stop shop for learning everything about building websites with Daftpage.Daftpage is the simplest way to create websites for all purposes in seconds. Without knowing how to code, and for free!Get StartedDaftpage is a new type of website builder that works like a doc.It makes website building easy, fun and offers tons of powerful features for free. Just type / in your page to get started!Start here✨ Create your first site🧱 Add blocks🚀 PublishGuides🔖 Add a custom domainFeatures🔥 Drops🎨 Drawings👻 Ghost mode💀 Skeleton modeCant find the answer you're looking for?mail us at [email protected] the awesome Daftpage community on: 👾 DiscordDaftpageCopyright © 2022 Daftpage, Inc.All rights reserved.ProductPricingTemplatesHelp & SupportHelp CenterGetting startedBlogCompanyAboutRoadmapTwitterAffiliate Program👾 Discord", metadata={'source': 'https:/daftpage.com/help', 'score': 0.86570895}), Document(page_content=" is the simplest way to create websites for all purposes in seconds. Without knowing how to code, and for free!Get StartedDaftpage is a new type of website builder that works like a doc.It makes website building easy, fun and offers tons of powerful features for free. Just type / in your page to get started!Start here✨ Create your first site🧱 Add blocks🚀 PublishGuides🔖 Add a custom domainFeatures🔥 Drops🎨 Drawings👻 Ghost mode💀 Skeleton modeCant find the answer you're looking for?mail us at [email protected] the awesome Daftpage community on: 👾 DiscordDaftpageCopyright © 2022 Daftpage, Inc.All rights reserved.ProductPricingTemplatesHelp & SupportHelp CenterGetting startedBlogCompanyAboutRoadmapTwitterAffiliate Program👾 Discord", metadata={'source': 'https:/daftpage.com/help', 'score': 0.8645384})] previous Contextual Compression next ElasticSearch BM25 Contents Query By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/databerry.html
3d04b97b9cd4-0
.ipynb .pdf Metal Contents Ingest Documents Query Metal# Metal is a managed service for ML Embeddings. This notebook shows how to use Metal’s retriever. First, you will need to sign up for Metal and get an API key. You can do so here # !pip install metal_sdk from metal_sdk.metal import Metal API_KEY = "" CLIENT_ID = "" INDEX_ID = "" metal = Metal(API_KEY, CLIENT_ID, INDEX_ID); Ingest Documents# You only need to do this if you haven’t already set up an index metal.index( {"text": "foo1"}) metal.index( {"text": "foo"}) {'data': {'id': '642739aa7559b026b4430e42', 'text': 'foo', 'createdAt': '2023-03-31T19:51:06.748Z'}} Query# Now that our index is set up, we can set up a retriever and start querying it. from langchain.retrievers import MetalRetriever retriever = MetalRetriever(metal, params={"limit": 2}) retriever.get_relevant_documents("foo1") [Document(page_content='foo1', metadata={'dist': '1.19209289551e-07', 'id': '642739a17559b026b4430e40', 'createdAt': '2023-03-31T19:50:57.853Z'}), Document(page_content='foo1', metadata={'dist': '4.05311584473e-06', 'id': '642738f67559b026b4430e3c', 'createdAt': '2023-03-31T19:48:06.769Z'})] previous kNN next Pinecone Hybrid Search Contents Ingest Documents Query By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/metal.html
e44eb5993657-0
.ipynb .pdf Vespa Vespa# Vespa is a fully featured search engine and vector database. It supports vector search (ANN), lexical search, and search in structured data, all in the same query. This notebook shows how to use Vespa.ai as a LangChain retriever. In order to create a retriever, we use pyvespa to create a connection a Vespa service. #!pip install pyvespa from vespa.application import Vespa vespa_app = Vespa(url="https://doc-search.vespa.oath.cloud") This creates a connection to a Vespa service, here the Vespa documentation search service. Using pyvespa package, you can also connect to a Vespa Cloud instance or a local Docker instance. After connecting to the service, you can set up the retriever: from langchain.retrievers.vespa_retriever import VespaRetriever vespa_query_body = { "yql": "select content from paragraph where userQuery()", "hits": 5, "ranking": "documentation", "locale": "en-us" } vespa_content_field = "content" retriever = VespaRetriever(vespa_app, vespa_query_body, vespa_content_field) This sets up a LangChain retriever that fetches documents from the Vespa application. Here, up to 5 results are retrieved from the content field in the paragraph document type, using doumentation as the ranking method. The userQuery() is replaced with the actual query passed from LangChain. Please refer to the pyvespa documentation for more information. Now you can return the results and continue using the results in LangChain. retriever.get_relevant_documents("what is vespa?") previous VectorStore next Weaviate Hybrid Search By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/vespa.html
a98d244b2588-0
.ipynb .pdf Azure Cognitive Search Contents Set up Azure Cognitive Search Using the Azure Cognitive Search Retriever Azure Cognitive Search# Azure Cognitive Search (formerly known as Azure Search) is a cloud search service that gives developers infrastructure, APIs, and tools for building a rich search experience over private, heterogeneous content in web, mobile, and enterprise applications. Search is foundational to any app that surfaces text to users, where common scenarios include catalog or document search, online retail apps, or data exploration over proprietary content. When you create a search service, you’ll work with the following capabilities: A search engine for full text search over a search index containing user-owned content Rich indexing, with lexical analysis and optional AI enrichment for content extraction and transformation Rich query syntax for text search, fuzzy search, autocomplete, geo-search and more Programmability through REST APIs and client libraries in Azure SDKs Azure integration at the data layer, machine learning layer, and AI (Cognitive Services) This notebook shows how to use Azure Cognitive Search (ACS) within LangChain. Set up Azure Cognitive Search# To set up ACS, please follow the instrcutions here. Please note the name of your ACS service, the name of your ACS index, your API key. Your API key can be either Admin or Query key, but as we only read data it is recommended to use a Query key. Using the Azure Cognitive Search Retriever# import os from langchain.retrievers import AzureCognitiveSearchRetriever Set Service Name, Index Name and API key as environment variables (alternatively, you can pass them as arguments to AzureCognitiveSearchRetriever). os.environ["AZURE_COGNITIVE_SEARCH_SERVICE_NAME"] = "<YOUR_ACS_SERVICE_NAME>" os.environ["AZURE_COGNITIVE_SEARCH_INDEX_NAME"] ="<YOUR_ACS_INDEX_NAME>" os.environ["AZURE_COGNITIVE_SEARCH_API_KEY"] = "<YOUR_API_KEY>" Create the Retriever retriever = AzureCognitiveSearchRetriever(content_key="content") Now you can use retrieve documents from Azure Cognitive Search retriever.get_relevant_documents("what is langchain") previous Arxiv next ChatGPT Plugin Contents Set up Azure Cognitive Search Using the Azure Cognitive Search Retriever By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/indexes/retrievers/examples/azure_cognitive_search.html
70805e07ee7a-0
.ipynb .pdf Chat Prompt Templates Contents Format output Different types of MessagePromptTemplate Chat Prompt Templates# Chat Models take a list of chat messages as input - this list commonly referred to as a prompt. These chat messages differ from raw string (which you would pass into a LLM model) in that every message is associated with a role. For example, in OpenAI Chat Completion API, a chat message can be associated with the AI, human or system role. The model is supposed to follow instruction from system chat message more closely. LangChain provides several prompt templates to make constructing and working with prompts easily. You are encouraged to use these chat related prompt templates instead of PromptTemplate when querying chat models to fully exploit the potential of underlying chat model. from langchain.prompts import ( ChatPromptTemplate, PromptTemplate, SystemMessagePromptTemplate, AIMessagePromptTemplate, HumanMessagePromptTemplate, ) from langchain.schema import ( AIMessage, HumanMessage, SystemMessage ) To create a message template associated with a role, you use MessagePromptTemplate. For convenience, there is a from_template method exposed on the template. If you were to use this template, this is what it would look like: template="You are a helpful assistant that translates {input_language} to {output_language}." system_message_prompt = SystemMessagePromptTemplate.from_template(template) human_template="{text}" human_message_prompt = HumanMessagePromptTemplate.from_template(human_template) If you wanted to construct the MessagePromptTemplate more directly, you could create a PromptTemplate outside and then pass it in, eg: prompt=PromptTemplate( template="You are a helpful assistant that translates {input_language} to {output_language}.", input_variables=["input_language", "output_language"], ) system_message_prompt_2 = SystemMessagePromptTemplate(prompt=prompt) assert system_message_prompt == system_message_prompt_2 After that, you can build a ChatPromptTemplate from one or more MessagePromptTemplates. You can use ChatPromptTemplate’s format_prompt – this returns a PromptValue, which you can convert to a string or Message object, depending on whether you want to use the formatted value as input to an llm or chat model. chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt]) # get a chat completion from the formatted messages chat_prompt.format_prompt(input_language="English", output_language="French", text="I love programming.").to_messages() [SystemMessage(content='You are a helpful assistant that translates English to French.', additional_kwargs={}), HumanMessage(content='I love programming.', additional_kwargs={})] Format output# The output of the format method is available as string, list of messages and ChatPromptValue As string: output = chat_prompt.format(input_language="English", output_language="French", text="I love programming.") output 'System: You are a helpful assistant that translates English to French.\nHuman: I love programming.' # or alternatively output_2 = chat_prompt.format_prompt(input_language="English", output_language="French", text="I love programming.").to_string() assert output == output_2 As ChatPromptValue chat_prompt.format_prompt(input_language="English", output_language="French", text="I love programming.") ChatPromptValue(messages=[SystemMessage(content='You are a helpful assistant that translates English to French.', additional_kwargs={}), HumanMessage(content='I love programming.', additional_kwargs={})]) As list of Message objects chat_prompt.format_prompt(input_language="English", output_language="French", text="I love programming.").to_messages() [SystemMessage(content='You are a helpful assistant that translates English to French.', additional_kwargs={}), HumanMessage(content='I love programming.', additional_kwargs={})] Different types of MessagePromptTemplate# LangChain provides different types of MessagePromptTemplate. The most commonly used are AIMessagePromptTemplate, SystemMessagePromptTemplate and HumanMessagePromptTemplate, which create an AI message, system message and human message respectively. However, in cases where the chat model supports taking chat message with arbitrary role, you can use ChatMessagePromptTemplate, which allows user to specify the role name. from langchain.prompts import ChatMessagePromptTemplate prompt = "May the {subject} be with you" chat_message_prompt = ChatMessagePromptTemplate.from_template(role="Jedi", template=prompt) chat_message_prompt.format(subject="force") ChatMessage(content='May the force be with you', additional_kwargs={}, role='Jedi')
https://langchain.readthedocs.io/en/latest/modules/prompts/chat_prompt_template.html
70805e07ee7a-1
ChatMessage(content='May the force be with you', additional_kwargs={}, role='Jedi') LangChain also provides MessagesPlaceholder, which gives you full control of what messages to be rendered during formatting. This can be useful when you are uncertain of what role you should be using for your message prompt templates or when you wish to insert a list of messages during formatting. from langchain.prompts import MessagesPlaceholder human_prompt = "Summarize our conversation so far in {word_count} words." human_message_template = HumanMessagePromptTemplate.from_template(human_prompt) chat_prompt = ChatPromptTemplate.from_messages([MessagesPlaceholder(variable_name="conversation"), human_message_template]) human_message = HumanMessage(content="What is the best way to learn programming?") ai_message = AIMessage(content="""\ 1. Choose a programming language: Decide on a programming language that you want to learn. 2. Start with the basics: Familiarize yourself with the basic programming concepts such as variables, data types and control structures. 3. Practice, practice, practice: The best way to learn programming is through hands-on experience\ """) chat_prompt.format_prompt(conversation=[human_message, ai_message], word_count="10").to_messages() [HumanMessage(content='What is the best way to learn programming?', additional_kwargs={}), AIMessage(content='1. Choose a programming language: Decide on a programming language that you want to learn. \n\n2. Start with the basics: Familiarize yourself with the basic programming concepts such as variables, data types and control structures.\n\n3. Practice, practice, practice: The best way to learn programming is through hands-on experience', additional_kwargs={}), HumanMessage(content='Summarize our conversation so far in 10 words.', additional_kwargs={})] previous Output Parsers next Example Selectors Contents Format output Different types of MessagePromptTemplate By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/prompts/chat_prompt_template.html
a6ec384bdce9-0
.rst .pdf Output Parsers Output Parsers# Note Conceptual Guide Language models output text. But many times you may want to get more structured information than just text back. This is where output parsers come in. Output parsers are classes that help structure language model responses. There are two main methods an output parser must implement: get_format_instructions() -> str: A method which returns a string containing instructions for how the output of a language model should be formatted. parse(str) -> Any: A method which takes in a string (assumed to be the response from a language model) and parses it into some structure. And then one optional one: parse_with_prompt(str) -> Any: A method which takes in a string (assumed to be the response from a language model) and a prompt (assumed to the prompt that generated such a response) and parses it into some structure. The prompt is largely provided in the event the OutputParser wants to retry or fix the output in some way, and needs information from the prompt to do so. To start, we recommend familiarizing yourself with the Getting Started section Output Parsers After that, we provide deep dives on all the different types of output parsers. CommaSeparatedListOutputParser Datetime Enum Output Parser OutputFixingParser PydanticOutputParser RetryOutputParser Structured Output Parser previous Similarity ExampleSelector next Output Parsers By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/prompts/output_parsers.html
40fcdcb607a4-0
.ipynb .pdf Getting Started Contents PromptTemplates to_string to_messages Getting Started# This section contains everything related to prompts. A prompt is the value passed into the Language Model. This value can either be a string (for LLMs) or a list of messages (for Chat Models). The data types of these prompts are rather simple, but their construction is anything but. Value props of LangChain here include: A standard interface for string prompts and message prompts A standard (to get started) interface for string prompt templates and message prompt templates Example Selectors: methods for inserting examples into the prompt for the language model to follow OutputParsers: methods for inserting instructions into the prompt as the format in which the language model should output information, as well as methods for then parsing that string output into a format. We have in depth documentation for specific types of string prompts, specific types of chat prompts, example selectors, and output parsers. Here, we cover a quick-start for a standard interface for getting started with simple prompts. PromptTemplates# PromptTemplates are responsible for constructing a prompt value. These PromptTemplates can do things like formatting, example selection, and more. At a high level, these are basically objects that expose a format_prompt method for constructing a prompt. Under the hood, ANYTHING can happen. from langchain.prompts import PromptTemplate, ChatPromptTemplate string_prompt = PromptTemplate.from_template("tell me a joke about {subject}") chat_prompt = ChatPromptTemplate.from_template("tell me a joke about {subject}") string_prompt_value = string_prompt.format_prompt(subject="soccer") chat_prompt_value = chat_prompt.format_prompt(subject="soccer") to_string# This is what is called when passing to an LLM (which expects raw text) string_prompt_value.to_string() 'tell me a joke about soccer' chat_prompt_value.to_string() 'Human: tell me a joke about soccer' to_messages# This is what is called when passing to ChatModel (which expects a list of messages) string_prompt_value.to_messages() [HumanMessage(content='tell me a joke about soccer', additional_kwargs={}, example=False)] chat_prompt_value.to_messages() [HumanMessage(content='tell me a joke about soccer', additional_kwargs={}, example=False)] previous Prompts next Prompt Templates Contents PromptTemplates to_string to_messages By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/prompts/getting_started.html
bc86231a1675-0
.rst .pdf Prompt Templates Prompt Templates# Note Conceptual Guide Language models take text as input - that text is commonly referred to as a prompt. Typically this is not simply a hardcoded string but rather a combination of a template, some examples, and user input. LangChain provides several classes and functions to make constructing and working with prompts easy. The following sections of documentation are provided: Getting Started: An overview of all the functionality LangChain provides for working with and constructing prompts. How-To Guides: A collection of how-to guides. These highlight how to accomplish various objectives with our prompt class. Reference: API reference documentation for all prompt classes. previous Getting Started next Getting Started By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/prompts/prompt_templates.html
e6fa1e7fcbd0-0
.rst .pdf Example Selectors Example Selectors# Note Conceptual Guide If you have a large number of examples, you may need to select which ones to include in the prompt. The ExampleSelector is the class responsible for doing so. The base interface is defined as below: class BaseExampleSelector(ABC): """Interface for selecting examples to include in prompts.""" @abstractmethod def select_examples(self, input_variables: Dict[str, str]) -> List[dict]: """Select which examples to use based on the inputs.""" The only method it needs to expose is a select_examples method. This takes in the input variables and then returns a list of examples. It is up to each specific implementation as to how those examples are selected. Let’s take a look at some below. See below for a list of example selectors. How to create a custom example selector LengthBased ExampleSelector Maximal Marginal Relevance ExampleSelector NGram Overlap ExampleSelector Similarity ExampleSelector previous Chat Prompt Templates next How to create a custom example selector By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/prompts/example_selectors.html
f4129c63ca1a-0
.md .pdf How to create a custom example selector Contents Implement custom example selector Use custom example selector How to create a custom example selector# In this tutorial, we’ll create a custom example selector that selects every alternate example from a given list of examples. An ExampleSelector must implement two methods: An add_example method which takes in an example and adds it into the ExampleSelector A select_examples method which takes in input variables (which are meant to be user input) and returns a list of examples to use in the few shot prompt. Let’s implement a custom ExampleSelector that just selects two examples at random. Note Take a look at the current set of example selector implementations supported in LangChain here. Implement custom example selector# from langchain.prompts.example_selector.base import BaseExampleSelector from typing import Dict, List import numpy as np class CustomExampleSelector(BaseExampleSelector): def __init__(self, examples: List[Dict[str, str]]): self.examples = examples def add_example(self, example: Dict[str, str]) -> None: """Add new example to store for a key.""" self.examples.append(example) def select_examples(self, input_variables: Dict[str, str]) -> List[dict]: """Select which examples to use based on the inputs.""" return np.random.choice(self.examples, size=2, replace=False) Use custom example selector# examples = [ {"foo": "1"}, {"foo": "2"}, {"foo": "3"} ] # Initialize example selector. example_selector = CustomExampleSelector(examples) # Select examples example_selector.select_examples({"foo": "foo"}) # -> array([{'foo': '2'}, {'foo': '3'}], dtype=object) # Add new example to the set of examples example_selector.add_example({"foo": "4"}) example_selector.examples # -> [{'foo': '1'}, {'foo': '2'}, {'foo': '3'}, {'foo': '4'}] # Select examples example_selector.select_examples({"foo": "foo"}) # -> array([{'foo': '1'}, {'foo': '4'}], dtype=object) previous Example Selectors next LengthBased ExampleSelector Contents Implement custom example selector Use custom example selector By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 08, 2023.
https://langchain.readthedocs.io/en/latest/modules/prompts/example_selectors/examples/custom_example_selector.html