--- YAML tags: annotations_creators: - found language_creators: - found - expert-generated languages: - hu licenses: - bsd-2-clause multilinguality: - monolingual pretty_name: HuSST size_categories: - unknown source_datasets: - extended|other task_categories: - text-classification - text-scoring task_ids: - sentiment-classification - sentiment-scoring --- # Dataset Card for HuSST ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** - **Repository:** [HuSST dataset](https://github.com/nytud/HuSST) - **Paper:** - **Leaderboard:** - **Point of Contact:** [lnnoemi](mailto:ligeti-nagy.noemi@nytud.hu) ### Dataset Summary This is the dataset card for the Hungarian version of the Stanford Sentiment Treebank. This dataset which is also part of the Hungarian Language Understanding Evaluation Benchmark Kit [HuLU](hulu.nlp.nytud.hu). The corpus was created by translating and re-annotating the original SST (Roemmele et al., 2011). ### Supported Tasks and Leaderboards 'sentiment classification' 'sentiment scoring' ### Languages The BCP-47 code for Hungarian, the only represented language in this dataset, is hu-HU. ## Dataset Structure ### Data Instances For each instance, there is an id, a sentence and a sentiment label. An example: ``` { "Sent_id": "dev_0", "Sent": "Nos, a Jason elment Manhattanbe és a Pokolba kapcsán, azt hiszem, az elkerülhetetlen folytatások ötletlistájáról kihúzhatunk egy űrállomást 2455-ben (hé, ne lődd le a poént).", "Label": "neutral" } ``` ### Data Fields - Sent_id: unique id of the instances; - Sent: the sentence, translation of an instance of the SST dataset; - Label: "negative", "neutral", or "positive". ### Data Splits HuSST has 3 splits: *train*, *validation* and *test*. | Dataset split | Number of instances in the split | |---------------|----------------------------------| | train | 9344 | | validation | 1168 | | test | 1168 | The test data is distributed without the labels. To evaluate your model, please [contact us](mailto:ligeti-nagy.noemi@nytud.hu), or check [HuLU's website](hulu.nlp.nytud.hu) for an automatic evaluation (this feature is under construction at the moment). ## Dataset Creation ### Source Data #### Initial Data Collection and Normalization The data is a translation of the content of the SST dataset (only the whole sentences were used). Each sentence was translated by a human translator. Each translation was manually checked and further refined by another annotator. ### Annotations #### Annotation process The translated sentences were annotated by three human annotators with one of the following labels: negative, neutral and positive. Each sentence was then curated by a fourth annotator (the 'curator'). The final label is the decision of the curator based on the three labels of the annotators. #### Who are the annotators? The translators were native Hungarian speakers with English proficiency. The annotators were university students with some linguistic background. ## Additional Information ### Licensing Information ### Citation Information If you use this resource or any part of its documentation, please refer to: Ligeti-Nagy, N., Ferenczi, G., Héja, E., Jelencsik-Mátyus, K., Laki, L. J., Vadász, N., Yang, Z. Gy. and Vadász, T. (2022) HuLU: magyar nyelvű benchmark adatbázis kiépítése a neurális nyelvmodellek kiértékelése céljából [HuLU: Hungarian benchmark dataset to evaluate neural language models]. XVIII. Magyar Számítógépes Nyelvészeti Konferencia. (in press) ``` @inproceedings{ligetinagy2022hulu, title={HuLU: magyar nyelvű benchmark adatbázis kiépítése a neurális nyelvmodellek kiértékelése céljából}, author={Ligeti-Nagy, N. and Ferenczi, G. and Héja, E. and Jelencsik-Mátyus, K. and Laki, L. J. and Vadász, N. and Yang, Z. Gy. and Vadász, T.}, booktitle={XVIII. Magyar Számítógépes Nyelvészeti Konferencia}, year={2022} } ``` and to: Socher et al. (2013), Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. 1631--1642. ``` @inproceedings{socher-etal-2013-recursive, title = "Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank", author = "Socher, Richard and Perelygin, Alex and Wu, Jean and Chuang, Jason and Manning, Christopher D. and Ng, Andrew and Potts, Christopher", booktitle = "Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing", month = oct, year = "2013", address = "Seattle, Washington, USA", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/D13-1170", pages = "1631--1642", } ``` ### Contributions Thanks to [lnnoemi](https://github.com/lnnoemi) for adding this dataset.