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ABSTRACT based on sequence similarity seatch (Goeigdi|,[2001 | Parlet all,
Motivation: Profile hidden Markov Models (pHMMs) are a popu- ).

lar and very useful tool in the detection of the remote homologue
protein families. Unfortunately, their performance is not always
satisfactory when proteins are in the “twilight zone”. We present
HMMER-STRUCT, a model construction algorithm and tool that tries
to improve pHMM performance by using structural information while
training pHMMs. As a first step, HMMER-STRUCT constructs a set
of pHMMs. Each pHMM is constructed by weighting each residue in
an aligned protein according to a specific structural property of the
residue. Properties used were primary, secondary and tertiary struc-
tures, accessibility and packing. HMMER-STRUCT then prioritizes
the results by voting.

Results: We used the SCOP database to perform our experiments.
Throughout, we apply leave-one-family-out cross-validation over pro-
tein superfamilies. First, we used the MAMMOTH-mult structural
aligner to align the training set proteins. Then, we performed two
sets of experiments. In a first experiment, we compared structure
weighted models against standard pHMMs and against each other.
In a second experiment, we compared the voting model against
individual pHMMs. We compare method performance through ROC
curves and through Precision/Recall curves, and assess significance
through the paired two tailed t-test. Our results show significant
performance improvements of all structurally weighted models over
default HMMER, and a significant improvement in sensitivity of the
combined models over both the original model and the structurally
weighted models.

Availability: The HMMER-STRUCT tool has been implemented as
Perl scripts and as C source code. The structure weighting proce-
dure is available as a patch to the HMMER program. All the test sets,
train sets, programs and scripts used in this study are available in
http://wiki.biowebdb.org/index.php/Hmmer-struct.

Contact: julianab@cos.ufr].br

1 INTRODUCTION

One of the major tasks in computational molecular biologyois
aid large-scale protein annotation and biological knogéedisco-
very. Functional characterization of unknown-functiorotpins is
often inferred through sequence similarity search methsdsh
as BLAST [Altschuletall, [1990) and FASTA[(Peardoh, 1985).
However, when the evolutionary relationship among pratém
distant, methods based on profile hidden Markov models (pt$MM

(Eddy,[1996; Krogtet all,[1994) are known to outperform methods

*to whom correspondence should be addressed

Profile Hidden Markov Models are probabilistic models that
are often used to represent groups of homolog sequencese The
models have been a key tool in protein annotation, and atdyhig
effective for scoring similar sequences. Unfortunatefye perfor-
mance of pHMMs degrades for sequences in the twilight zone,
that is, for homologue sequences with low identity (belows30
This limitation has motivated a number of different appieecto
increase pHMM performance. Proposals include new scoting-f
tions, new null models_(Karplust al),[2005) and prior probability
(Brownet all,[1993). Researchers have also combined other infor-
mation with pHMMSs: T-HMM [Qianet all,[2004) uses phylogenetic
information; HMM-STR (Bystroffet al,[2000), combines pHMMs
and support vector machines (Scholkepél},[1999).

The observation that homologue proteins tend to preserve-st
ture suggests that structural information should be exhemele-
vant in detecting homologues. In fact, it has been shown that
pHMNMs trained with multiple sequence alignments based otepr
ins structural alignment can have better performance thivilis
based on state-of-the art aligners that apply primary semue
information only, when remote homology detections are ssse
sed [(Bernardest all, [2007). In this vein, researchers have propo-
sed special alphabets to represent structural elementsllfivis
,), or modifying pHMM structure to add protein
three-dimensional information (Alexandretzal.,[2004). Although
such methods are more powerful than pHMMs, arguably they are
computationally more expensive both in training and in sifesa-
tion, and to the best of our knowledge have not become widely
used.

We present a novel method to apply structural information in
protein classification. In contrast to the previous apphneac our
method relies on pHMMs. Our main contribution is a residue
weighting-algorithm that incorporates protein structiméormation
into pHMMs. Further, we apply different structural propestto
train a library of 5 pHMMs from a homologue protein set. The
properties we consider are primary, secondary, and tersiauc-
ture, also used in previous methods. We also apply two ptieger
that, to the best of our knowledge, have not been used in this
task before, but that are often important in this domainyvesa
accessibility and residue packing. The classification ofilenown-
function protein is then obtained by combining the clasaffan
from the library of pHMMs. The main advantage of our method is
that structural information is only used to train the pHMNitice
that scoring is still performed using sequence data, assgupto
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(Alexandrovet all,[2004). Our method was implemented by exten-

an emission probability distribution; delete states aretqun the case of

ding the HMMER package and experimental evaluation usieg th proteins, emission distributions have 20 entries, one pén@acid.

SCOP database showed significant improvement over HMMER.

2 METHODS

In our experiments, a protein homologue set is aligned blziag the
MAMMOTH-mult ,M) aligner. MAMMOTH produces
two outputs: one represents the multiple sequence alignthased on spa-
tial coordinates similarity) and the other the structurbdranent. These
outputs are used to build weight matricMS', which represent residue
structural weights for each protein. These matrices weedl @ pHMM
training stage. The sectign 2.2 will give more details onlthitding of MS'.
Basically, our approach builds five pHMMs. The simplest pHNBvbuilt
from MAMMOTH’s multiple sequence alignment, by keeping tiefault
sequence-weighting algorithm of HMMER. This model is cA{#iMM1D.

In order to aid to build the remaining pHMMs our approach gatusMS'.
The matrices used in buildingHMM2D, pHMMAcc and pHMMOi, incor-
porate secondary structure, residue solvent accesgihifit residue packing
information, respectively. In order to build these masiegere used both
MAMMOTH sequence alignment plus structural propertiesaoted using
the joy package ,@) to collect these information from
PDB coordinates (Heleet all,[2000). Last, we used MAMMOTH's multi-
ple sequence alignment plus structural alignment to buitth&rix based on
homologue core structurels (Matsetcall, [1999). That matrix was used to
build pHMM3D. Figure[l shows the proposed method.

PDB Files
5
pdb,
MAMMOTH
]:)dbd —_———
pdb3 Structural alignment Sequence alignment from
coordina[‘e/\ilruclural alignment
ATOM 1 N VAL 1 -4.04 5.22 13.66 ACCTACDDK- S
ATOM 2 CA VAL 1 -3.56 15.75 4.90 A%g?ﬁgggﬁg?
Jo build weight X Find HCS
Y matrices

M M M M
s s s -a¥ s
‘pHMM 1D ‘ ‘pHMM 2D ‘ LwHMM Acc‘ ‘pHMM oi ‘ ‘pHMM 3D ‘

Fig. 1. First, ahomologue protein set is aligned by using MAMMOT k#m
aligner. The aligner produces a multiple sequence aligharetha structural
alignment. The multiple sequence alignment is used to kai@nventio-
nal pHMM using HMMER packagepHMM1D. Aligned sequences are fed
to thejoy tool. Thejoy output is used to construct weight matrices, which
are then used to build secondgliMM2D, accessibilitypHMMAcc, and
packingpHMMOi models. Finally, the structural alignment is used to find
the homologue core structure, which is then used to corigtkigIM3D.

2.1 Profile HMMs

Profile HMMs represent conserved regions in sequences aersees of
match (M) states. Inserted material is representednasrt states (), and
deleted regions adelete states (D). The parameters of pHMMs are pro-
babilities of two events: dransition probability from a state to another
state, and a probability that a specific state will emit a Bjpe@sidue (say,

a specific amino-acid when comparing proteins), cadiiksion probabi-
lity. Obviously, only match and insert states generate chasaated have

Possible transitions define the structure of the pHMM. Sgstsuch as
SAM ,@) allow transitions between all types of states,
totaling 3 transitions per state, hence 9 per node. On ther ¢thnd, the
HMMER system relies on the Plan7 modEMQQB), whidalthws
I — D andD — [ transitions.

Emission probabilities are calculated by the equdiibn lereh; (o) is
the observed frequency of residaién j column of the alignment, and(o)
represents the pseudo counts of residughich are obtained from Dirichlet
mixtures, as seen im,@).

e;(0) = cj(o) + a(o)
! 2ok ¢ilok) + alog)

In the same way, the transition probability can be founduglothe equa-
tion[2, wherec;,; is the observed frequency of transitions between state
and statd, wherek,l € {M, I, D}, anday,; represents the pseudo counts
of transition betweet and!.

(€))

Ckl + Qg
Do Ckl + Qg

2.2 Sequence Weighting

One problem in representing families of sequences is thanaddets of
very similar sequences may be over-represented in thertgagequences,
introducing bias. Thereforesequence-weighting methods were introduced
to compensate for over-representation among multiplynetigsequences.
In general, very similar sequence receives lower weights dimergent
sequence higher weight. Sequence weighting was applidaetednstruc-
tion of position-specifics score matrix (PSS ,@), and
is fundamental to the performance of profile HMMs. In thedattase, the
default sequence weighting method used by HMMER packagehigla
quality algorithm based on phylogenetic tr gea),[1994).

Let A be an generic alignment used to train a pHMM. Supposeyith
N sequences and length Then, we can represert alignment weights as
a matrix W, such thatw;; represents the weight of an amino-acid of pro-
tein I in the j*" alignment position, as shown in the equafidn 3. Basically, a
sequence-weighting method for pHMMs attributes equal ttsi¢p all resi-
dues in the protein, that isy;; = w;j, for Vj, k& < L.

@)

tg =

@)

In the spirit of PSSMs, we propose to reinforce residuestbaespond
to preserved regions in the protein. Our motivation is thaémhomologue
proteins are structurally aligned, spatial overlappin@fatom set occurs.
This set is called thevariant core or core structure, and can be used to cha-
racterize homologue proteins. We argue that the residués icore structure
should carry more weight rather than the residues outsiledte. Thus, we
propose sequence-weighting method that gives differeighwéo each resi-
due in the same protein, based on structural relevance. Weepresent
such “structural” weights by a matrix/s, where each residue of the same
protein has a different weight.

mi1 mirL

4)

mn1 WNL
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As mentioned before, the default sequence-weighting ndetised by
HMMER package is a high quality algorithm. Therefore, we bam both
the default HMMER’sM matrix in [3) and the ofV/, structural matrix in

@), as shown ir({5).

wiimail wirmir

M, = MMT = ®)

WN1IMN1 WNLMNL

However, introducing weights affect the computation ofthserved fre-
quencies. More precisely, the observed frequengy) shown ir(1 is now
found through the equatidd 6, whesg; = w;;m;; is structural weight of
residues, according toM; matrix.

si5, If o is the amino-acid in position ij

N
cj(@) =D f(o) - f(o) =

0, otherwise

(6)

In the same way, we apply the equati@hs 7 to determjpeshown in2.
If the k£ and! states are either M or | states,; can be calculated through
the arithmetic mean afi;;,. andm;. If at least one state is a D statg,; is
eithermy, if L € {D}, ormy, if k € {D}. Last, if both are D statesy;
is 1.

SkT"FSI sekle {M, I}

N ik le{D K b
Cklzszl oSk = o e v
i Sl seke {Dyel ¢ {D}

1, sekle {D}

2.3 The M structural weight matrices

As explained above, our algorithm considers a number afwdifft sources of
structural information. Next, we approach how this infotimawas obtained
and used to buil//s; matrix.

231 Secondary structural elements Secondary structure is often
conserved among homologue proteins. Indeaslifs (Brandenet all,[1991),
consensus sequences in homologue proteins, usually eel@dmbination
of well conserved secondary structure eleme g

la6m
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lash
1dly

-MKTPITEATIAAADTQGRFLSNT
-MLDAFAKVVAQADARGEFLTNA
- -SIVTKSIVNADAEARYLSPG
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01122222214444442222211
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Fig. 2. Representation of the secondary structure elements thraligned
numbers. Loop regions (L) is 1, helices (H) 2 and sheets (C) 4

2.3.2 Solvent Inaccessibility The hydrophobic interactions of non-
polar side chains in amino-acids are believed to contrisigeificantly to
the stability of the tertiary structures in proteins. Hyghobic amino-acids
will tend to cluster together, not as a result of attractibat as a result of
their repulsion by the hydrogen bond water network in whiu protein is
dissolved. Therefore, these amino-acids will preferdiptize located away
from the surface of the molecule. Since they form the corerofgin, they
tend to be more conserved and are, thus, more useful foifiglagtremote
evolutionary relationships.

We have utilized the PSM, @.) program to provide sol-
vent inaccessibility information. PSA is part of the JOY kage. TheM
matrix was built giving weight 3 for inaccessible residuesl aveight one
to the others. The weights are based lon M) which
demonstrated empirically that inaccessible amino- amels;fmee times more
conserved than accessible amino-acids. Thematrix represents structural
weights that were used to build the mogeIMMAcc, as shown in figurgl1.

2.3.3 Packing density The tertiary structure of proteins stems from a
very large number of atomic interactions. In regions whaeeinteractions
are stronger residues tend to be packed together. It is welvi that densely
packed regions tend to be preserved, and hence that amdstonging
to those regions are usually more conserved than other aaids. TJ Ooi
created a measure, called the Ooi Numbe wvedl,[1986), that esti-
mates the amino-acid packing density. Essentially, ther@aiber counts
for a residue counts the number of neighboringe@toms within a radius of
14A of the given residues own @ Although crude, this measure does give
a good impression of which parts of the structure are bunetvehich are
exposed on the surface.

We again use the JOY package to obtain the Ooi number andagstim
packing density. FigurE]l3 shows a stretch of JOY output, iriclvithe
numbers represent the Ooi measure for the Dehaloperoxgtassn in the

In order to build alM; matrix based on secondary structure elements weGlobins family (16wc PDB code). We used these numbers tal b struc-

need to identify secondary structure elements in the aigiequences. This
is possible because we assume we have full structural datheftraining
sequences. In this work, we chose to utilize the SSTRUCTrprogpart of
the widely usedjoy package ), to extract secondary
elements from the PDB files. SSTRUCT output is a characteresesg, such
that the charactersL=loop, H=helix, C=shegtmatch a secondary structure
element against a residue, as shown in figlire 2. Following&savork on
the relative frequency of conserved regi ), we map-
ped each SSTRUCT element as follows:— 1, H — 2, andC — 4.
Our mapping thus favours conservation in sheets, and giefaild weight
to loops. Although the active site of proteins can be fountbaps, these

tural weight matrix)M,. The structural weights were than used to build the
modelpHMMOoi, as shown in figurgl1.

lewb

Doi number
233244334322333444455544432222332332
232222322332222432343344335444433322
334333443343221232233334543553454334
22212233333533454454334323232*

regions often contaimdel segments. Figuid 2 shows an example of structu- Fig. 3. Ooi measure for the Dehaloperoxidase protein of Globinsiljam

ral weight attributions for proteins in a partial alignment

(16wc PDB code), each number represents the amount of raigimhino-
acids inside a radius of 4
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2.3.4 Homologuous Core Structure  Structural similarity among pro-
teins can provide valuable insights into their functiotyaliOne way to
provide structural similarities is through three-dimemsil alignment of pro-
teins, also calledstructural alignment. The goal is to align two or more
proteins by trying to overlap the three-dimensional cauaitds of their
atoms. When multiple homologue proteins are structurdiggned, we tend
to observe that there is a subset of coordinates whose Isfmtations
are better conserved across structural alignment. Thisesub called the
homolog core structure (HCS) ,@). According to the result
reported by Gersteiat all (1995), HCS can be utilized to detect homologue
proteins.

Our goal was to estimate the HCS of a set of protein. As a firgtap
ximation, we propose a method to extract it from structutignanent by
calculating how much aligned residues from different prsteend to be
close together. Following MAMMOTH, we represent residua®tgh the

evaluate the performance of remote homology detection adstland has
been widely used to reach this gdal (Espadelet],[2005] Wistrandt all,
[2005] Houet all,[2004] Alexandrot all, [2004).

SCOP classifies all protein domains of known structure inkidegarchy
with four levels: class, fold, super family and family. Inraatudy, we work
at the super family level, which gathers families in such g that a common
evolutionary origin is not obvious from sequence identityt probable from
an analysis of structure and from functional features. We\z that this
level better represents remote homolog.

Moreover, we used cross-validatidn_(Mitchéll, 1997) to pamre the dif-
ferent approaches. First, we divided SCOP database by fampéy level.
Next, from ASTRAL PDB40, we chose those super families doirig at
least three families and at least 20 sequences. We eventesteéd 39 super
families, as listed in Table 1. This whittled down the numéfesequences we
used to model building to 1137. Third, we implemented leane-family-

coordinates of their G atoms. In other words, we assume that closenessout cross-validation. For any super famityhavingn families, we builtn
between Ca atoms will approximate overlapping among amino-acids. To profiles so that each profile was built from the sequences in the remaining

find out how much amino-acids are close together, we utiliee Eucli-
dian distance measure, as shown in the equfdion 8. It reyisethe shortest
distance between two points in the space.

deqp = \/(l“a —23)2 4+ (Ya — Up)? + (2a — 2)? (8)

The degree of overlap between aligned residues in the stalalignment
was calculated through the relative distanie, equatiorP. This distance
can be found through the average distance among the amithdrathe
positionij and other amino-acids in thecolumn of alignment.

b= deqi b (,b41)
n—1

dij = ©)

Finally, the relative distance was normalized accordifffQcand it was used
to determine the degree of overlap of each residue. Thessumesavere nor-
malized by using the equati@n]10, whetg;,, is the minimal distance and
Omaaz; is the maximal Ooi measure for protein

dmin * Omazi

dij (10)

mg; =

After this step, we built thel/s; matrix, where eachn;; matrix element
corresponds to the relative distance of amino-a¢jdm the structural ali-
gnment. This matrix represents structural weights thaewsed to build the
modelpHMM3D, shown in the figurElL.

2.4 Library of structural models

In a second step, we join the models built from these matrioeform
a library of structural models aiming at building a single dabto repre-
sent the structural patterns under different aspects. & theehmmp fam
HMMER tool to combine the models together. Library of modese been
used in a number of studies, suchlas (Bategsaa, [Haftet all,[2003;
[Goughet all,[2001), and they are known to achieve better results theseth
achieved by single models.

2.5 Test Procedure

The main concern of our study is to build pHMMs that can be foglim
remote homology detection. Therefore, our experimentssidened pro-
teins with identity below 30%. To do so, we used the SCOP datb
), and more specifically ASTRAL SCOP version 1.67
PDB40 (with 6600 protein sequences). ASTRAL SCOP is pdeitu
interesting for our study because it describes structundl evolutionary
relationships among proteins, such that none of the segagencASTRAL

n — 1 families. Thus, thex — 1 sequences form the training set for profile
P. The test set for profilé> will be the remaining sequences (test positives)
plus all other database sequences (test negatives).

Table 1. Superfamily SCOP-Ids

all  al1381 a251 a26l. a3l a391 a4l 1412
b.18.1. b29.1. b36.1 b471.  b551. b60.l. b6l 1b7
b.82.1. c1.10. c231. c261. ¢361. c521.  ¢55.1. 558,

c.67.1. d.108.1. d.14.1. d.144.1. d.15.1. d.153.1. d1169d.3.1.

d58.7. d921. g3.11. g36. 037 g¢371  g.39.1

SCOP Super families used in our experiments. We only coresidguper families with
at least 20 proteins and three or more families.

In order to assess HMMER-STRUCT performance, we used the HRM
package. We did not compare with SA ,@) package.
First, because our goal was to evaluate whether structuoglepties can
improve pHMMs, not to compare the two packages, and secaerhuse
a related previous study on the same dataset actually sheiMddER out-
performing SAM ,@). The same study also indicated
better results on the “twilight zone” using structural aligent tools, such as
MAMMOTH-mult and 3DCOFFEE. We used MAMMOTH in this study.

Results were graphically analyzed by building ROC and BiegiRecall
curves. ROC curves are a common measure of performance tretyiused
in bioinformatics application. They are based on the retatf the false posi-
tives (non homologue proteins) and of true positives (hagat proteins),
and are obtained by varying a parameter that affect theagarships. We
further present Precision/Recall curves, as they give @ gaospective on
true positives, false positives and false negatives hitboth cases, the big-
ger the area under the curve (AUC), the more efficient theyaadltool is.

In both cases we used the minineaValue required to accept a match as the
parameter used to build both curves. We ranged e-valueebet®—>° and
10. Finally, we used the paired two tailed t-test to assessfiignce, and
assumed that results with< 0.05 (l.e. 95% of confidence) are significant.

3 RESULTS

As a first step, we build a model for each structural propeny a
evaluate it according to the methodology described in theéhivtis
section. The ROC curves are presented in fiflire 4 and the-Preci
sion/Recall curves in figurlgl 5. Both figures show all modeis t
is, pHMM2D (secondary structural modepHHMMOi (Ooi measure
model), pHMMAcc (inaccessibility model) angHMM3D (three-

SCOP present- 40% sequence identity. Thus, it is an excellent dataset todimensional structure model) outperforming the HMMER mode
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Table[2 shows the paired two tailed t-test between each madel
models built from structural properties perform signifidgrvhen

compared to HMMER. Only, theHMM3D andpHMMAcc results
are not significant in relation to each other.

True Positive

250

200

150

100

50

50

100

150

200 250

Next, we compare the performance of the model library with
respect to the initial HMMER model. To do so, we joined the
five models, one for each structural property, and scoredesie
sequences usingmmpfam. Figure[® shows the ROC curve for
the results. FigurE]7 shows graphically the results throRggci-
son/Recall curves. Both figures show HMMER-STRUCT outperfo
ming HMMER. TabldB displays significance results. The défee
between HMMER-STRUCT and HMMER results are statistically
significant according to paired two tailed t-test. The twitetht-test
also indicate significant differences between HMMER-STRUC
and each HMMER-STRUCT component, i.e, HMMB®{MM2D,
pHMM3D, pHMMAcc andpHMMOi.

250

200

False Positive

HMMER —+— pHMM2d - PHMM3d ---*--- pHMMacc & pHMMoi

Fig. 4. Performance of each model in HMMER-STRUCT tool, for MAM-
MOTH aligner, as measured by ROC Curves
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Fig. 5. Performance of each model in HMMER-STRUCT tool, for MAM-
MOTH aligner, as measured by Precision/Recall Curves

Table 2. HMMER-STRUCT paired t-test

True Positive

50

50

100

HMMER —+—
pHMM2d <~

150
False Positive

pHMM3d ------
pHMMacc

200

pHMMoi

@-HMMER-STRUCT - -o- -

250

Fig. 6. HMMER-STRUCT Performance for MAMMOTH aligner, as mea-
sured by ROC Curves
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HMMER | pHMM2D | pHMM3D | pHMMACC
pHMMOI | 0,00741 | 0,04 0,01 0,01
pHMMAcc | 0,03877 | 0,01 0,05

pHMM3D | 0,01 0,01

pHMM2D | 0,00660

Paired two tailed t-test when comparing performance of édMER-

STRUCT model all against all.

0.05 0.1 0.15 0.2
Recall
HMMER —+— PHMM3d -+ pHMMoi
pHMM2d pHMMacc - &-HMMER-STRUCT - -0- -

Fig. 7. HMMER-STRUCT Performance for MAMMOTH aligner, as mea-

sured by Precision/Recall Curves
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Table 3. HMMER-STRUCT pai- property. Therefore, combining the models increases tatysby
red t-test exploring the different structural properties.
Our method shows that structural information can be added
HMMER-STRUCT during the training phase of pHMM to improve sensitivity,thaut

HMMER 1071 .
SHNMAGS | 10~ much changes to the usage of pHMM methodology, and applied

pHMMOI | 103 .to recen.tly discovered proteins for which there is littleustural
pHMM2D | 10~ ° information.
pHMM3D [ 107

Paired two tailed t-test when compa-
ring performance of each HMMER-
STRUCT component with the combi-

ned model. 5 CONCLUSION

The increasing number of studies involving pHMMs and the use

of structural information has been quite remarka
4 DISCUSSION 2004 Alexandrowt all, 20041 Bystroffet all, [2000). Most of these
The accuracy of homology detection methods is essentialhir approaches build structural models based on three-diowasi
problem of inferring the function of unknown-function peats. coordinates. In contrast, we present a novel methodologyato
However, improving accuracy becomes hard when similaréitt b pHMMs based on structural alignment and other structurat pr
ween sequences is low. We proposed a method to improve pHMMperties using a set of homologue protein sequences. Ourotheth
sensitivity by adding structural properties in the modeilding builds five models from an aligned homologue sequence seh Ea
stage. We showed that the pHMMs trained according to thikotet model represents a different structural property, and thieruof
are more sensitive than pHMMs trained from multiple seqaenc the models represent the structural context of aligneceprset The
alignments, even if the alignment itself relied on struatyroper-  properties used were primary, secondary and tertiary tsires,
ties. Our experiments demonstrated best performangifigivi2D, accessibility and packing residue. Note that previousrgite have
that used secondary structural properties, andpfékIMOi, that  already used secondary and tertiary structural propettigsain
used packing density residues. Both pHMMs present sim@giop- pHMM, though in quite a different way. However, accessipiind

mance. We believe that the good results obtained witlpithdMoi packing residue properties were used for the first time in pHM
model can be attributed to the fact that tight packing is irtgptt for ~ training, with good results in the latter case.
protein stability, and follow well-known results that icdie that In order, to build each model, we developed a novel sequence-

amino-acids located in the core protein are more consetvad t weighting algorithm based on structural weights that angbated
amino-acids located in other sités (Privalov, 2000). Instime way,  for each amino-acid. Traditional weighting-algorithm wemjives
thepHMM2D model achieve good performance as secondary structhe same weight for every residue in the protein. Instead, we
ture elements are responsible for maintaining the form mdlogue  propose a method that gives a different weight to each amino-
proteins. These elements form motifs and domains, whichedae  acid into a protein, according to structural propertiest thag-

ted with protein function. Conserved sites may point to fiomally gest it may be in a conserved region. Our results relied oor pri
and structurally important regions. These observationg exalain work (Chakrabartét al!,[2004| Deanet al|, 2003/ Nishikawat al,

the higher performance of models based on packing resichesra ) that suggested interesting properties and estimiteid
secondary structural properties. weight.

The pHMMAcc models, based on amino-acid inaccessibility, and Nowadays, the most popular approach to discovering theiimc
thepHMM3D models, based on three-dimensional coordinates, didf a newly found protein is through sequence similarity skeain
not perform as well. TheHMMAcc models did not achieve statisti- fact, it is well known that structure is more conserved trequence,
cal significance results, when they were compared with HMMER and thus structural similarity can suggest function siritifaOn the
On the other hand, we observe that the inaccessibility ptpgan other hand, structural data is sparse and are usually ndalaiea
be explained by hydrophobic effects, as are the amino-aeiths  for proteins with unknown function. Therefore, it is veryportant
hydrophobic side-chain that go toward the core protein Ibgniiog that methods that uses structural properties to build nsod#l not
packages. Therefore hydrophobicity was represented impkiié- need to rely on structural information for a new protein. Gwathod
MOi model, that achieved good performance. Our results suggeshakes use of structural properties only at the model bigldiage,
the difference between models stems from ph#VIMOi models  but not at scoring.
to be more accurate and precise than what is used when lguildin Our results show that the use of structural properties c@nave
pHMMAcc. the sensitivity of remote homology methods. Moreover, thalai-

However, we believe the inaccessibility property is alseggpre-  nation of different model (one for each property) outperfsrthe
sented appropriately bpHMMOI model. Since amino-acids with use of individual properties. A number of future researckations

high packing density already are inaccessible. Therefi&MOi present themselves. It will be interesting to include modats,
outperformed thepHMMAcc, as pHMMoi has more information  such as that based on bond-hydrogen properties. Also] iaihte-
thanpHMMACcc. resting to apply our methodology to other remote homolog}sto

The chief contribution of our method was achieved when @l th such as SAMm,m) and T-HMl\fm @D
models work together. The combined models performed signifi Ultimately, we believe that our work is a step in the majorligrge
cantly better than any single model. We believe that thislterom of finding the set of structural properties or features tearesent
the fact that each trained pHMMs represents a differentcatral precisely membership of a super family.
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