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Abstract: This paper addresses a method to analyze the covert social network 
foundation hidden behind the terrorism disaster. It is to solve a node discovery 
problem, which means to discover a node, which functions relevantly in a 
social network, but escaped from monitoring on the presence and mutual 
relationship of nodes. The method aims at integrating the expert investigator’s 
prior understanding, insight on the terrorists' social network nature derived 
from the complex graph theory, and computational data processing. The social 
network responsible for the 9/11 attack in 2001 is used to execute simulation 
experiment to evaluate the performance of the method. 
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1 Introduction 

Terrorism is a man-made disaster. It causes great economic, social and environmental 

impacts. It is different from the emergence arising from natural disasters (earthquakes, 

hurricanes etc.), in that active non-routine responses are always necessary as well as the 

disaster recovery management. The short-term target of the responses includes 

interpretation of the hidden intention of the terrorism and arrest of the terrorists 

responsible for the disaster. The long-term target is identification and weakening of the 

covert foundation which raises, encourages, and helps terrorists. For example, a 

conspirator, named Mustafa A. Al-Hisawi, had attempted to help terrorists enter the 

United States (according to Wikipedia), and provided Mohamed Atta and the hijackers 

responsible for the 9/11 attack in 2001 with financial support worth more than $300,000 

(according to New York Times). Future terrorism disasters are mitigated and eliminated 

by dismantling such a covert social network foundation existing behind the terrorism. 

This paper addresses a method to analyze the covert social network foundation 

existing behind the terrorism disaster. Mathematically, the objective of the analysis is to 

solve a node discovery problem. The problem means to discover a node, which functions 

relevantly in a complex social network, but escaped from monitoring on the presence and 

mutual relationship of nodes either intentionally or accidentally. Practically, the problem 

is difficult to solve because of the 2 reasons. First, the terrorism disaster is infrequent and 

non-routine, and consequently does not take a fixed form. Second, the intelligence and 

surveillance (communication logs and meeting records are examples) on the covert social 

network is limited, or still worse, missing completely. We can not, therefore, rely on 

conventional machine learning and probabilistic inference techniques under such a 

condition. Instead, our method aims at integrating the expert investigator’s prior 

understanding, insight on the terrorists’ social network nature derived from the complex 

graph theory, and computational data processing. 

The approach to solve the node discovery problem is developed in section 2. The 

social network of the hijackers and conspirators in the 9/11 attack is reviewed in section 3. 

In section 4, the network in section 3 is used to execute simulation experiment to discover 

a covert conspirator by the approach presented in section 2. Related works are 

summarized in section 5. Concluding remarks are presented in section 6. 

2 Approach 

2.1 Problem definition 

Before presenting our approach, we define the node discovery problem and describe 

assumptions. The node discovery problem in a complex network is new in two senses. 
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First, the problem has not attracted much attention from researchers. It is in contrast to 

that a link discovery problem is studied to predict unknown chemical reaction between 2 

molecules in bio-informatics intensively. Second, the nature of covert social network 

foundation behind the terrorism is not understood well, despite the fact that many 

organizations and human relationships are described by scale-free networks or small 

worlds. 

This problem is illustrated in Figure 1. The inset (a) represents the observed records 

on the organization under investigation. Geographically distributed persons are likely to 

use the Internet to join the organizational decision-making process, to determine the 

attack plan, and to give instructions to the terrorists. In the example, the records are sets 

of participants of email-based on-line group discussions. Four persons (p0, p1, p2, p3) 

joined the first discussion (subject 0). We can gather a number of records automatically if 

we assume simply that an individual discussion is indicated by the same email subject. 

The records are in the form of a market basket shown by eq.(1). 

)1||0(}{ −≤≤= bipb ji . (1) 

The order of records and the order of persons in a record are not significant here. The 

problem may be extended to a time-sensitive or causality-sensitive situation where the 

orders provide us with a significant clue to solve the problem. Such a situation is for 

future study. Cluster structures can be extracted from the records. The cluster is a group 

of persons, between whom communication is active. In the example, two clusters c0 (p0, 

p1, p2, p3), and c1 (p4, p5, p6, p7) can be extracted. They are visualized on the social 

network diagram in the blue box. The diagram is an undirected graph. The black nodes 

denote persons, and black links between the nodes denotes the presence of active 

communication. The links are drawn according to the degree of activeness between two 

nodes at the end of the link. The links are not directed because the communication is bi-

directional. The cluster is not necessarily a clique (a complete graph where links exist 

between every possible pair of the nodes). 

The inset (b) represents the latent structure behind the observed records. In this 

example, the latent structure is a covert participant (or participants) who used telephone 

to tell persons in the separate clusters to encourage the organization-wide communication, 

and to adjust the direction of decision. The person escaped from the email surveillance in 

(a). The fifth record in (a) is not consistent from the viewpoint of the overall cluster 

structure of the organization. This is a clue. The unobserved person px may be hidden in 

the empty space between the gateway persons (p0, p4) in the clusters. The person is 

indicated by a red node and red links connecting the clusters in the social network 

diagram. The red node is a hypothetical candidate of the latent structure.  

Our aim is to reveal clues to infer (b) from (a). Note that the identity of the red nodes 

can not be derived from the observed records in (a) automatically, but is inferred with the 

aid of the expert investigator’s knowledge. Our primary interest here lies in drawing a 

social network diagram to invent hypothesis on the latent structure which is ready for 

testing. The interactive process for this purpose is presented in the following. 
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Figure 1 Inset (a) represents the observed records on the participants (pi) of email-based on-line 
group discussions. A record is a list of persons who join an individual discussion 
indicated by the same email subject. Two clusters c0 (p0, p1, p2, p3), and c1 (p4, p5, p6, 
p7) can be extracted from the five records. Black nodes denote persons. Black links 
between the nodes denotes the presence of communication. Inset (b) represents the 
latent structure (a covert participant) behind the observed records. The fifth record is a 
clue to infer that an unobserved person px may be hidden in the empty space between 
the gateway persons (p0, p4) in the clusters. The unobserved person may use telephone 
to foster communication between the gateway persons. Our aim is to reveal (b) from (a). 

2.2 Interactive process 

We propose an interactive process starting from the intelligence, surveillance, and the 

prior knowledge of expert investigators toward the hypothesis on the latent structure. 

Figure 2 shows the process. The algorithm, used in the computational data processing 

shown in the dashed grey box, visualizes the observed records on communication in the 

form of eq.(1) into a social network diagram. It consists of clustering and ranking 

procedure. The clustering procedure evaluates the activeness of communication between 

the persons, and uses the prior knowledge such as the number of groups or the known 

group leaders. The ranking procedure calculates likeliness of the suspicious inter-cluster 

relationships, which originates in the unobserved person hidden in the empty spots 

between the clusters, and indicates the position of the person as a red node. 

The expert investigators explore the difference between the visualized social network 

diagram and the prior understanding. The difference is expected to be a trigger to notice 

something new. The expert can update the prior understanding, iterate the above 

procedures, and finally invent a hypothesis on the latent structure (Maeno, 2007). The 

details of the algorithm are presented in the following. The essence of the algorithm is the 

ranking function to calculate likeliness of the suspicious inter-cluster relationships. 
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Figure 2 Interactive process from the intelligence, surveillance and prior knowledge of the expert 
investigators toward the hypothesis on the latent structure. The computational data 
processing in the dashed grey box visualizes the observed records on communication in 
the form of eq.(1). It consists of clustering using the prior knowledge, and ranking of 
suspicious inter-cluster relationships which originates in the unobserved person. The 
expert explores the difference between the visualized social network diagram and the 
prior understanding, which is the basis to invent a hypothesis. 

2.3 Computational data processing 

Our algorithm focuses on inter-cluster relationships in a social network (Ohsawa, 

2005). Examples of the inter-cluster relationships include sharing of information on the 

guard system among the hijacker groups via a conspirator, or efficient multicast of a 

directive to the groups from a conspirator. The input of the algorithm is the observed 

records in eq.(1). The output is the ranking of the individual records (indicating 

suspicious inter-cluster relationships or unobserved persons playing a catalyst role among 

the clusters), and the persons in the clusters playing a gateway role to the unobserved 

person. The output is further processed to draw a social network diagram. 

As a preparation, we define a simple Boolean function B(s) by eq.(2). It returns 1 if 

the statement s is true, and 0 otherwise. 





=
otherwise

true is  if

0

1
)(

s
sB

. (2) 

At first, the all persons appearing in the observed records bi in eq.(1) are grouped into 

clusters cj. The number of clusters |c| depends on the prior knowledge. Mutually close 

persons form a cluster. The measure of closeness between a pair of persons is evaluated 

by Jaccard’s coefficient. It is defined by eq.(3). The function F(pi) is the occurrence 

frequency of a person pi in the records. The closeness means activeness of the 

communication if the record is a set of the persons appearing together in the emails, 

conversations, or meetings. Jaccard’s coefficient is used widely in link discovery, web 

mining, or text processing. 
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Here, we employ the k-medoids clustering algorithm (Hastie, 2001). It is an EM 

(expectation-maximization) algorithm similar to the k-means algorithm for numerical 

data. A medoid )( jcpmed  locates most centrally within a cluster cj. It corresponds to the 

center of gravity in the k-means algorithm. The modoid persons are selected at random 

initially. The other |p|-|c| persons are classified into the clusters whose medoids is the 

closest. A new medoid is selected within an individual cluster so that the sum of 

Jaccard’s coefficients between the modoid and persons in the cluster can be maximal 

(M(cj) defined by eq.(4)). This is repeated until the medoids converge. 

∑
≠∧∈

=
))(()(

)),(()(

jiji cppcp

ijj pcpJcM

med

med

. (4) 

Other simple algorithms such as hierarchical clustering, or advanced algorithms for 

unsupervised learning, such as self-organizing mapping, can also be employed. 

Then, we evaluate the likeliness of the records as a candidate to include unobserved 

persons with a ranking function I(bi). The ranking function calculates the degree of 

strength at which the record attracts persons belonging to multiple clusters, which 

originates in an unobserved person hidden in the record. The unobserved person is 

assumed to be a catalyst to foster the inter-cluster relationship. We present a few ranking 

functions. The most simple ranking function Iav(bi) is defined by eq.(5). It is the degree 

of contribution of a person pk (belonging to the cluster cj) to the record bi, averaged over 

the clusters. The records having larger value are ranked as more likely. The algorithm 

retrieves the records in the order of likeliness. The number of retrieved records ret
m  

can be set arbitrarily (from 1 to |b|). 

∑ ∑−≤≤
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∈ ∈

∈
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Eq.(5) can be converted to a simpler form in eq.(6). 

∑
−≤≤ ∈∧∈

=
1||0
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)(min

||

1
)(
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k
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i pF
c

bI
ikjk
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. (6) 

A gateway person ),( ji cbpgtw  in the cluster cj for the record bi is calculated by 

eq.(7). It is the person who maximizes the term to be averaged in eq.(5). 

∑
−≤≤

∈ ∈

∈
=

1||0

)(

)(
maxarg),(

bl

lk

ik

cpk
ji

bpB

bpB
cbp

jk
gtw

. (7) 

Standard deviation is an alternative to calculate the likeliness. Isd(bi) defined by 

Eq.(8) is employed instead of eq.(5) or eq.(6). The records having smaller value are 

ranked as more likely. 
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The average of two of the largest values Itp(bi) is an alternative, instead of the 

average over the all clusters in eq.(5) or eq.(6). This is defined by eq.(9). The records 

having larger value are ranked as more likely. 

2
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The function T(xj,k) in eq.(9) picks up the k-th element from xj sorted in descending 

order. More formally, it is defined recursively by eq.(10). 

),1,0(max),(
)()),((

K==
<∧∉

kxkxT j
kllxTx

j
jj . (10) 

Finally, the retrieved records and gateway persons are visualised into a social network 

diagram. The unobserved person in the record bi is labelled as DEi, and drawn as a red 

node. The red node and the gateway persons ),( ji cbpgtw  are connected with red links. 

A social network diagram like the inset (b) in figure 1 is drawn in this way. 

3 Social network 

We briefly review the social network responsible for the 9/11 attack in 2001 (Krebs, 

2002). The study provides us with an insight on the covert social network foundation 

behind the terrorism disaster. The social network is also used in the simulation is section 

4.  (Krebs, 2002) and (Morselli, 2007) studied the social network consisting of the 19 

hijackers boarding on the 4 crashed airplanes (AA11, AA77, AA175, and UA93) and the 

revealed 18 conspirators. The network is shown in figures 3 and 4. Figure 3 shows the 

hijackers. Figure 4 includes the conspirators. 
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Figure 3 Social network diagram representing the observed 19 hijackers responsible for the 9/11 
attack (Krebs, 2002). The flight number of the hijacked airplanes such as AA11 is 
shown after “@” after the hijacker names. 

 

Figure 4 Social network diagram representing the observed 19 hijackers responsible for the 9/11 
attack in figure 3 with the revealed 18 covert conspirators (Krebs, 2002). 

The overall network topology is studied. The nodal degree averaged over the all 

nodes is 6.4)( =dµ . Gini coefficient of the nodal degree is 0.33. The clustering 

coefficient averaged over the all nodes is 6.0)( =cµ . It is 3.2 times larger than that in the 

Barabasi-albert model (Barabasi, 1999), a scale-free network, having the same Gini 

coefficient. Large clustering coefficient indicates that clusters exist as a core structure, 

but the network takes a less compact form. As qualitatively suggested by (Klerks, 2002), 

the terrorists possess a cluster-and-bridge structure, rather than a center-and-periphery 
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structure. It is in agreement with the observation that the Al Qaeda network is a flexible 

tie-up of isolated cliques (Popp, 2006). Note that a bridge is an essential component to 

make clusters rendezvous to form a social network. The absence of hubs overcomes the 

drawbacks of a scale-free network, where the hubs result in vulnerability to attacks 

(Albert, 2000) and easy exposure by the efficient search over the network (Adamic, 

2001). 

4 Simulation 

4.1 Test data 

We present quantitative performance evaluation of the proposed method. The test 

data, as an input to our method, is communication records simulated on the 9/11 social 

network in section 3, and configured to include a convert conspirator as a latent structure 

for simulation purpose. The records are generated in the 2 steps below. In the second step, 

a latent structure is configured by deleting a conspirator from the records (Maeno, 2006). 

Note that the latent structure does not change the communication pattern in the social 

network, but changes observable communication. 

The first step is to collect the simulated communication into records. Communication 

is assumed to be information dissemination over links from an initiator. It is like a 

conversation taking place under the subject the initiator concerns. Communication 

transmits on a link at a probability of t. It represents communication strength. 
Communication reaches )(dt µ×  persons by a hop on the average. The maximal 

transmission distance is limited to 2-hop long because 3-hop long communication covers 

most persons due to the small network size. An initiator is selected uniformly. Persons, 

whom communication reaches, are grouped into a record. Hijackers and conspirators are 

not distinguished here. The average number of persons included in a basket is |bi|=6.5, 

10.1, 13.7, and 17.1 at t=0.4, 0.6, 0.8, and 1.0. The number of baskets used in the 

evaluation is |b|=370. The following is example records initiated by Abdul A. Al-Omari, 

Mustafa A. Al-Hisawi, Waleed Alshehri, and Fayez Ahmed. 

• b0={Abdul A. Al-Omari, Marwan Al-Shehhi, Mohamed Atta, Waleed Alshehri}. 

• b1={Mustafa A. Al-Hisawi, Marwan Al-Shehhi, Mohamed Atta, Fayez Ahmed, 

Waleed Alshehri}. 

• b2={Waleed Alshehri, Abdul A. Al-Omari, Mustafa A. Al-Hisawi, Wail Alshehri, 

Satam Suqami}. 

• b3={Fayez Ahmed, Mohand Alshehri, Hamza Alghamdi}. 

The second step is to configure a covert conspirator as a latent structure. A latent 

structure is configured to the records by deleting the conspirator (target to be inferred in 

the simulation) from the data. As a result, the deleted conspirator and the related links 

become invisible. The records, where the covert conspirator is hidden behind, are the 

input to the algorithm. The following is example records where Mustafa A. Al-Hisawi is 

configured to be a covert conspirator. The algorithm is expected to retrieve b2’ and b3’, 

which are different from b2 and b3. Such clues are used to start investigation on Waleed 

Alshehri who is included in both baskets. 
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• b0’={Abdul A. Al-Omari, Marwan Al-Shehhi, Mohamed Atta, Waleed Alshehri} =b0. 

• b1’={Marwan Al-Shehhi, Mohamed Atta, Fayez Ahmed, Waleed Alshehri}. 

• b2’={Waleed Alshehri, Abdul A. Al-Omari, Wail Alshehri, Satam Suqami}. 

• b3’={Fayez Ahmed, Mohand Alshehri, Hamza Alghamdi}=b3. 

4.2 Performance evaluation 

In information retrieval, precision and recall are used as evaluation criteria. Precision 

p is the fraction of relevant data among the all data returned by search. The relevant data 

here is the records where the covert conspirator has been deleted in the second step. 

Recall r is the fraction of the all relevant data that is returned by the search among the all 

relevant data. They are defined by eq(11). and eq.(12). 

ret

ret

m

bbB

p mi

ii∑
−≤≤
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= 10
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. (11) 

∑

∑
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ii

bbB

bbB

r
ret
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Besides, F value is useful as a geometric mean of precision and recall. It is defined by 

eq.(13). 

rp

pr

rp

F
+

=
+

=
2

)
11

(
2

1

1

. (13) 

F value gain gF is defined by eq.(14). It is the ratio of the F value of the algorithm to 

the F value of the random retrieval. 

rd
F

F

F
g =

. (14) 

Performance of the algorithm is evaluated with the test data under several conditions. 

Figure 5 shows precision and recall to retrieve the records where a covert conspirator, 

Mustafa A. Al-Hisawi, has been hidden. Mustafa A. Al-Hisawi was a big financial 

sponsor to the hijackers, as mentioned in section 1.The number of clusters is |c|=4. The 

probability of communication transmission is t=0.8. The horizontal axis is the ratio of the 

number of retrieved basket data to the number of the whole basket data ( ||/ bmret ). 

The records retrieved as top 10% ranking are correct. The algorithm outputs correct 

information. The ranking function Isd(bi) seems to show a little better performance than 

Iav(bi). Isd(bi) is employed in the following study. Precision is 100% when the top 10% 

of the baskets are retrieved. The algorithm works fine. Precision is 0.45 when the all 

baskets are retrieved. The problem here includes many correct answers. It is not so 

difficult because the network is small. (Maeno, 2006) studies the performance for a 

network consisting of 400 nodes 
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Figure 5 Precision p and recall r to retrieve the records where a covert conspirator, Mustafa A. Al-
Hisawi, has been hidden: (a) p using Iav(bi), (b) r using Iav(bi), (c) p using Isd(bi), (d) r 
using Isd(bi), (e) p using Itp(bi), and (f) r using Itp(bi). The number of clusters is |c|=4. 
The probability of communication transmission is t=0.8. The horizontal axis is the ratio 
of the number of retrieved basket data to the number of the whole basket data (mret/|b|). 

Figure 6 shows precision and recall at |c|=2, 4, 8, and t=0.8. The value of |c| depends 

on the prior knowledge of the social network structure. The case where |c|=4 is a 

reasonable choice, based on the knowledge that 4 airplanes were hijacked. It actually 

shows the best performance. With the wrong prior knowledge, |c|=2, the performance 

degrades. Performance degradation at |c|=8 is small because the practical number of 

groups including conspirators may be close to, but a little larger than 4. 

 

Figure 6 Precision p and recall r to retrieve the records where a covert conspirator, Mustafa A. Al-
Hisawi, has been hidden: (a) p at |c|=2, (b) r at |c|=2, (c) p at |c|=4, (d) r at |c|=4, (e) p at 
|c|=8, and (f) r at |c|=8. The simulation condition is that t=0.8, and Isd(bi) is used. 
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Figure 7 shows F value gain at |c|=4, and t=1.0, 0.8, 0.6, 0.4. At t=1.0, 0.8, the 

performance is stable (the curve is smooth). At t=1.0, the gain is small because the 

increasing input information and longer reach communication make the problem easy. At 

t=0.6, the performance begins to be unstable (the curve begins to fluctuate). At t=0.4, the 

algorithm fails to work because the input information is too poor to extract inter-cluster 

relationship.  

 

Figure 7 F value gain to retrieve the records where a covert conspirator, Mustafa A. Al-Hisawi, has 
been hidden: (a) t=1.0, (b) t=0.8, (c) t=0.6, and (d) t=0.4. The simulation condition is 
that |c|=4, and Isd(bi) is used. 

 

Figure 8 shows F value gain for a variety of covert conspirators. The algorithm works 

for Lotfi Raissi, or Rayed M. Abdullah. Lotfi Raissi was under suspicion of training the 

pilots who hijacked the AA77 and flew it into the Pentagon. Rayed M. Abdullah trained 

with Hani Hanjour who hijacked the AA77. Their position in the social network is similar 

to Mustafa A. Al-Hisawi. For Ramzi B. Al-Shibh, or Said Bahaji, the algorithm also 

works, although a little degradation is observed. For Osama Awadallah, or Raed Hijazi, 

the performance becomes less stable and worse. Many times, Osama Awadallah met 

Nawaf Al-Hazmi who hijacked the AA77. Raed Hijazi was said to have connection to 

Osama bin Laden, and to prepare the explosives for the Millennium plot in Jordan in 

2000. The degradation may arise because Osama Awadallah and Raed Hijazi are at the 

border of the network. Their absence in the records does not affect the overall clustering 

structure, and is not easy to discover. The algorithm suffers from limitation for such 

covert conspirators. 
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Figure 8 F value gain to retrieve the records where a covert conspirator has been hidden. The covert 
conspirator is (a) Mustafa A. Al-Hisawi, (b) Lotfi Raissi, (c) Rayed M. Abdullah, (d) 
Ramzi B. Al-Shibh, (e) Said Bahaji, (f) Osama Awadallah, and (g) Raed Hijazi. The 
simulation condition is that |c|=4, t=0.8, and Isd(bi) is used. 

Figure 9 shows F value gain to retrieve the records where a covert conspirator, Raed 

Hijazi, has been hidden. Iav(bi) and Itp(bi) are employed again as in Figure 5. Itp(bi) 

shows better performance although it is still a little unstable and may not be sufficient for 

a practical use. The performance may be improved by focusing on the relationship 

between 2 clusters, rather than between the all clusters. 

 

Figure 9 F value gain to retrieve the records where a covert conspirator, Raed.Hijazi, has been 
hidden: using (a) Iav(bi), (b) Isd(bi), and (c) Itp(bi). The simulation condition is the 
same as in figure 5 (|c|=4 and t=0.8). 
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4.3 Social network visualization 

A social network diagram is drawn from the observed records according to the 

process in figure 2. The unobserved person in a suspicious record is drawn as a red node. 

The red node and the gateway persons ),( ji cbpgtw  are connected with red links. 

Figure 10 shows the social network diagram. The condition is the same as in figure 5, 

where a covert conspirator, Mustafa A. Al-Hisawi, has been hidden and the target to 

discover. The 4 terrorist groups are inter-connected with 10 of the highly ranked red 

nodes, DEi, corresponding to Mustafa A. Al-Hisawi hidden in the suspicious records. The 

bottom left cluster, including Nawaf Alhazmi, Mohamed Atta, and Hani Hanjour, is 

isolated and not connected to the red nodes. Terrorists who appear more frequently are 

less emphasized because of the denominator of eq.(5) or eq.(6). This is not a problem, but 

good news. We are inclined to overlook uncommon and unexpected clues by paying too 

much attention to something frequent and conspicuous. On the other hand, focusing on 

something infrequent is a double-edged sword. We may confuse the clues observed 

infrequently with random noise. Majed Moqed, Mohamed Abdi, and Ahmed K. I. S. Al-

Ani are probably noise. They are distant from Mustafa A. Al-Hisawi in figure 4. 

It is, however, remarkable that Waleed Alshehri and Mohand Alshehri are retrieved 

as neighbor persons of the red nodes indicating the existence of Mustafa A. Al-Hisawi. 

They are close to him. Waleed Alshehri, one of muscle hijackers, helped Mohammed 

Atta hijack the AA11 and fly it into the North Tower of the World Trade Center. Mohand 

Alshehri hijacked the AA175 and flew it into the South Tower of the World Trade Center. 

Waleed Alshehri is connected with 6 links. He is the keystone person for the investigators 

to gather information on relatives, friends, and associates to approach to Mustafa A. Al-

Hisawi. 

 

Figure 10 Four clusters and ten of the highly ranked red nodes corresponding to Mustafa A. Al-
Hisawi hidden in the suspicious records. Waleed Alshehri and Mohand Alshehri are 
retrieved as neighbor persons of the red nodes. 
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5 Related works 

Existing terrorist or criminal social networks are studied empirically. (Batallas, 2006) 

applied centrality (Freeman, 1979) and brokerage (Cusumano, 2000) to analyze an 

aircraft engine development project, and suggested relevance of an information leader 

team, which could be either a bottleneck or an innovation diffuser. (Keila, 2006) applied 

factor analysis to study email exchange in Enron, which ended in bankruptcy due to the 

institutionalized accounting fraud. (Klerks, 2002) points out that criminal organizations 

tend to be strings of inter-linked small groups that lack a central leader, but to coordinate 

their activities along logistic trails and through bonds of friends, and that hypothesis can 

be built by paying attention to remarkable white spots and hard-to-fill positions in a 

network. (Krebs, 2002) investigates the 9/11 terrorist network, and reveals that the 

relevance of conspirators who reduce the distance between hijackers and enhance 

communication efficiently. (Morselli, 2007) investigates Kreb’s network from the 

viewpoint of efficiency and security trade-off, and suggests that more security-oriented 

structure arises from longer time-to-task of the terrorists’ objectives, and that conspirators 

improve communication efficiency, preserving hijackers’ small visibility and exposure. 

Complex network, graph theory, and learning help us get an insight on the dynamics 

of a social network, in addition to summarizing and visualizing a network (Shen, 2007), 

and analyzing a cognitive network (Krackhardt, 1987). Scale-free networks (Barabasi, 

1999) and small worlds (Watts, 1998) present us much insight on the structure and 

evolution of a social network: scientists’ collaboration, actors in movies etc. A power law 

in the nodal degree distribution governs the scale-free network. (Fenner, 2007) proposes 

an exponential cutoff mechanism to modify the power law. Error attack tolerance (Albert, 

2000) and search efficiency (Adamic, 2001) are of particular interest for practical 

applications. 

Link discovery is applied to predict collaboration between scientists from the 

published co-authorship (Liben-Nowell, 2004). (Adamic, 2003) proposes a technique to 

infer friends and neighbors from the information available on the web. (Singh, 2004) 

applied a hidden Markov model and a Bayesian network to predict the behavior of 

terrorists. Learning of a Bayesian network is extended to study the probabilistic nature of 

latent variables. (Silva, 2006) studied learning of a structure of a linear latent variable 

graph. (Friedman, 1998) studied learning of a structure of a dynamic probabilistic 

network. The principled analytic approach often suffers from complexity problem. The 

complexity includes bi-directional and cyclic influence among the many observed and 

latent nodes (beyond a triad: 1 latent node influencing 2 observed nodes). 

6 Concluding remark 

In this paper, we demonstrate the proposed method to analyze the covert social 

network foundation hidden behind the terrorism disaster. The method integrates the 

expert investigator’s prior understanding, insight on the terrorists' social network nature 

derived from the complex graph theory, and computational data processing. It is effective 

to discover a node, which functions relevantly in a social network, but escaped from 

monitoring on the presence and mutual relationship of nodes. Precision, recall, and F 

value characteristics of the algorithm are evaluated in the simulation experiment using the 

social network responsible for the 9/11 attack in 2001. 



   

 

   

   

 

   

   

 

   

    Y. Maeno and Y. Ohsawa    
 

    

 

 

   

   

 

   

   

 

   

       
 

There are still remaining issues. How high is the quality of the hypothesis invented 

from the social network diagram indicating unobserved persons? We need to test the 

quality of the hypothesis invented by subject investigators in more realistic cases. How 

wide is the applicability of the algorithm in terms of social network topology, 

communication pattern, and their dynamical change? We need to investigate on the 

performance of the algorithm under more variety of environments, and to optimize the 

ranking function. We believe that the proposed method will contribute to understand the 

latent threats in social phenomena and human activities, as well as to analyze the covert 

social network foundation hidden behind the terrorism disaster, along with the future 

study for the remaining issues. 
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