Datasets:

Modalities:
Text
Formats:
json
Languages:
Norwegian
ArXiv:
Libraries:
Datasets
pandas
License:
norwegian_parliament / utils /norwegian_parliament_backup.py
pere's picture
jsonlines
4e81ff1
raw
history blame
2.98 kB
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Norwegian Parliament Speeches (1998, 2016)"""
import csv
import datasets
_CITATION = """
@InProceedings{--,
author = {---},
title = {---},
booktitle = {---},
year = 2021,
address = "---"
}
"""
_DESCRIPTION = """\
The Norwegian Parliament Speeches is a collection of text passages from
1998 to 2016 and pronounced at the Norwegian Parliament (Storting) by members
of the two major parties: Fremskrittspartiet and Sosialistisk Venstreparti.
"""
_HOMEPAGE = "https://github.com/NBAiLab/notram/"
_BASE_URL = "https://storage.googleapis.com/notram-public/finetune_datasets/parliament_speeches_1998_2016_frp_or_sv"
_URLS = {
"train": f"{_BASE_URL}/train.csv",
"dev": f"{_BASE_URL}/dev.csv",
"test": f"{_BASE_URL}/test.csv",
}
class NorwegianParliament(datasets.GeneratorBasedBuilder):
"""Norwegian Parliament Speeches (1998, 2016)"""
VERSION = datasets.Version("1.0.0")
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"text": datasets.Value("string"),
"label": datasets.ClassLabel(names=["Fremskrittspartiet", "Sosialistisk Venstreparti"]),
"date": datasets.Value("string"),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
downloaded_files = dl_manager.download(_URLS)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
]
def _generate_examples(self, filepath):
with open(filepath, encoding="utf-8") as csv_file:
csv_reader = csv.reader(csv_file, delimiter=",")
for idx, (label, text, _, date) in enumerate(csv_reader):
label = int(label)
yield int(idx), {
"text": text,
"label": label,
"date": date,
}