Datasets:

Modalities:
Text
Formats:
csv
Languages:
English
Libraries:
Datasets
pandas
License:
davidmezzetti commited on
Commit
b9537dc
·
1 Parent(s): a28e0d7

Initial version

Browse files
Files changed (2) hide show
  1. README.md +111 -0
  2. articles.csv +0 -0
README.md ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ ---
6
+
7
+ # PubMed HMPV Articles
8
+
9
+ _Current as of January 7, 2025_
10
+
11
+ This dataset is metadata (id, publication date, title, link) from PubMed articles related to HMPV. It was created using [paperetl](https://github.com/neuml/paperetl) and the [PubMed Baseline](https://pubmed.ncbi.nlm.nih.gov/download/).
12
+
13
+ The 37 million articles were filtered to match either of the following criteria.
14
+
15
+ - MeSH code = [D029121](https://meshb-prev.nlm.nih.gov/record/ui?ui=D029121)
16
+ - Keyword of `HMPV` in either the `title` or `abstract`
17
+
18
+ ## Retrieve article abstracts
19
+
20
+ The full article abstracts can be retrieved via the [PubMed API](https://www.nlm.nih.gov/dataguide/eutilities/utilities.html#efetch). This method accepts batches of PubMed IDs.
21
+
22
+ Alternatively, the dataset can be recreated using the following steps and loading the abstracts into the dataset (see step 5).
23
+
24
+ ## Download and build
25
+
26
+ The following steps recreate this dataset.
27
+
28
+ 1. Create the following directories and files
29
+
30
+ ```bash
31
+ mkdir -p pubmed/config pubmed/data
32
+
33
+ echo "D029121" > pubmed/config/codes
34
+ echo "HMPV" > pubmed/config/keywords
35
+ ```
36
+
37
+ 2. Install `paperetl` and download `PubMed Baseline + Updates` into `pubmed/data`.
38
+
39
+ ```bash
40
+ pip install paperetl datasets
41
+
42
+ # Install paperetl from GitHub until v2.4.0 is released
43
+ pip install git+https://github.com/neuml/paperetl
44
+ ```
45
+
46
+ 3. Parse the PubMed dataset into article metadata
47
+
48
+ ```bash
49
+ python -m paperetl.file pubmed/data pubmed/articles pubmed/config
50
+ ```
51
+
52
+ 4. Export to dataset
53
+
54
+ ```python
55
+ from datasets import Dataset
56
+
57
+ ds = Dataset.from_sql(
58
+ ("SELECT id id, published published, title title, reference reference FROM articles "
59
+ "ORDER BY published DESC"),
60
+ f"sqlite:///pubmed/articles/articles.sqlite"
61
+ )
62
+ ds.to_csv(f"pubmed-hmpv/articles.csv")
63
+ ```
64
+
65
+ 5. _Optional_ Export to dataset with all fields
66
+
67
+ paperetl parses all metadata and article abstracts. If you'd like to create a local dataset with the abstracts, run the following instead of step 4.
68
+
69
+ ```python
70
+ import sqlite3
71
+ import uuid
72
+
73
+ from datasets import Dataset
74
+
75
+ class Export:
76
+ def __init__(self, dbfile):
77
+ # Load database
78
+ self.connection = sqlite3.connect(dbfile)
79
+ self.connection.row_factory = sqlite3.Row
80
+
81
+ def __call__(self):
82
+ # Create cursors
83
+ cursor1 = self.connection.cursor()
84
+ cursor2 = self.connection.cursor()
85
+
86
+ # Get article metadata
87
+ cursor1.execute("SELECT * FROM articles ORDER BY id")
88
+ for row in cursor1:
89
+ # Get abstract text
90
+ cursor2.execute(
91
+ "SELECT text FROM sections WHERE article = ? and name != 'TITLE' ORDER BY id",
92
+ [row[0]]
93
+ )
94
+ abstract = " ".join(r["text"] for r in cursor2)
95
+
96
+ # Combine into single record and yield
97
+ row = {**row, **{"abstract": abstract}}
98
+ yield {k.lower(): v for k, v in row.items()}
99
+
100
+ def __reduce__(self):
101
+ return (pickle, (str(uuid.uuid4()),))
102
+
103
+ def pickle(self, *args, **kwargs):
104
+ raise AssertionError("Generator pickling workaround")
105
+
106
+ # Path to database
107
+ export = Export("pubmed/articles/articles.sqlite")
108
+ ds = Dataset.from_generator(export)
109
+ ds = ds.sort("published", reverse=True)
110
+ ds.to_csv("pubmed-hmpv-full/articles.csv")
111
+ ```
articles.csv ADDED
The diff for this file is too large to render. See raw diff