File size: 5,111 Bytes
403bdae 7d22bc3 403bdae 9c9aa2a 403bdae 7d22bc3 403bdae ef502b6 7d22bc3 403bdae 17e4982 7d22bc3 17e4982 403bdae 7d22bc3 403bdae 7d22bc3 403bdae 7d22bc3 403bdae 7d22bc3 403bdae bf98f61 ef502b6 403bdae 7d22bc3 403bdae 7d22bc3 403bdae 7d22bc3 403bdae 05c5eaa 403bdae 17e4982 403bdae 05c5eaa 7d22bc3 403bdae 05c5eaa 403bdae 05c5eaa 17e4982 a069be8 2aa24be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import os
import subprocess
import requests
import shutil
from tqdm import tqdm
cuda_url = "https://huggingface.co/datasets/NeuroDonu/PortableSource/resolve/main/CUDA_124.7z"
updater_url = "https://huggingface.co/datasets/NeuroDonu/PortableVersions/resolve/main/visomaster/updater.bat"
start_url = "https://huggingface.co/datasets/NeuroDonu/PortableVersions/resolve/main/visomaster/start_nvidia.bat"
git_repo_url = "https://github.com/visomaster/VisoMaster"
models_url = "https://huggingface.co/datasets/NeuroDonu/PortableVersions/resolve/main/visomaster_models.7z"
ffmpeg_url = "https://github.com/visomaster/visomaster-assets/releases/download/v0.1.0_dp/ffmpeg.exe"
base_dir = os.path.dirname(os.path.abspath(__file__))
visomaster_dir = os.path.join(base_dir, "Visomaster")
cuda_archive_path = os.path.join(base_dir, "CUDA_124.7z")
cuda_extract_dir = os.path.join(base_dir, "CUDA")
seven_zip_path = os.path.join(base_dir, "7z.exe")
git = os.path.join(base_dir, "git", "cmd", "git.exe")
python = os.path.join(base_dir, "python", "python.exe")
requirements = os.path.join(visomaster_dir, "requirements_cu124.txt")
updater_bat = os.path.join(base_dir, "updater.bat")
start_bat = os.path.join(base_dir, "start_nvidia.bat")
ffmpeg_path = os.path.join(visomaster_dir, "dependencies", "ffmpeg.exe")
pip_cmd = [python, "-m", "pip", "install", "uv"]
uv_cmd = [python, "-m", "uv", "pip", "install"]
models_path = os.path.join(visomaster_dir, "model_assets")
models_name = os.path.join(models_path, "visomaster_models.7z")
cuda_bin_path = os.path.join(base_dir, "CUDA", "bin")
cuda_lib_path = os.path.join(base_dir, "CUDA", "lib")
def clear_terminal():
os.system('cls' if os.name == 'nt' else 'clear')
def download_with_requests(url, destination):
response = requests.get(url, stream=True, headers={"User-Agent": "Mozilla/5.0"})
total_size = int(response.headers.get("content-length", 0))
block_size = 16384
progress_bar = tqdm(total=total_size, unit="B", unit_scale=True, desc=f"Скачивание {os.path.basename(destination)}")
with open(destination, "wb") as file:
for data in response.iter_content(block_size):
progress_bar.update(len(data))
file.write(data)
progress_bar.close()
def extract_archive(archive_path, extract_dir):
subprocess.run([seven_zip_path, "x", archive_path, f"-o{extract_dir}", "-y"], check=True)
def clone_git_repo(repo_url, clone_dir):
if os.path.exists(clone_dir):
return
subprocess.run([git, "clone", repo_url, clone_dir], check=True)
def setup_cuda_paths():
if os.path.exists(cuda_bin_path) and os.path.exists(cuda_lib_path):
current_path = os.environ.get("PATH", "")
os.environ["PATH"] = f"{cuda_bin_path};{cuda_lib_path};{current_path}"
def install_requirements():
uv_torch = [uv_cmd, "torch==2.4.1", "torchvision", "torchaudio", "--index-url", "https://download.pytorch.org/whl/cu124"]
uv_tensorrt = [uv_cmd, "tensorrt==10.6.0", "tensorrt-cu12_libs==10.6.0", "tensorrt-cu12_bindings==10.6.0", "--index-url", "https://pypi.nvidia.com"]
dependencies = [
"numpy==1.26.4",
"opencv-python==4.10.0.84",
"scikit-image==0.21.0",
"pillow==9.5.0",
"onnx==1.16.1",
"protobuf==4.23.2",
"psutil==6.0.0",
"onnxruntime-gpu==1.20.0",
"packaging==24.1",
"PySide6==6.7.2",
"kornia",
"tqdm",
"ftfy",
"regex",
"pyvirtualcam==0.11.1",
"numexpr",
"onnxsim",
"requests",
"pyqt-toast-notification==1.3.2",
"qdarkstyle",
"pyqtdarktheme"
]
subprocess.run(uv_torch, check=True)
subprocess.run(uv_tensorrt, check=True)
for dependency in dependencies:
subprocess.run(uv_cmd + dependency.split(), check=True)
def download_bat():
download_with_requests(updater_url, updater_bat)
download_with_requests(start_url, start_bat)
def download_ffmpeg():
download_with_requests(ffmpeg_url, ffmpeg_path)
def download_models():
if not os.path.exists(models_path):
os.makedirs(models_path)
download_with_requests(models_url, models_name)
extract_archive(models_name, models_path)
def has_safetensors_files(directory):
for filename in os.listdir(directory):
if filename.endswith(".safetensors"):
return True
return False
if __name__ == "__main__":
clear_terminal()
if not os.path.exists(cuda_extract_dir):
download_with_requests(cuda_url, cuda_archive_path)
extract_archive(cuda_archive_path, cuda_extract_dir)
os.remove(cuda_archive_path)
if not os.path.exists(visomaster_dir):
clone_git_repo(git_repo_url, visomaster_dir)
setup_cuda_paths()
install_requirements()
if not os.path.exists(updater_bat) or os.path.exists(start_bat):
download_bat()
if not os.path.exists(ffmpeg_path):
download_ffmpeg()
if has_safetensors_files(models_path):
pass
else:
download_models()
clear_terminal()
print("Установка завершена!") |