Click to expand directory structure
└───IITKGP_Fence dataset
├───Labeled
│ ├───GT
│ │ (1).png
│ │ ...
│ │ (175).png
│ │
│ ├───Imgs
│ │ (1).png
│ │ ...
│ │ (175).png
│ │
│ └───Others
│ ├───Bird
│ │ c1.png
│ │ ...
│ │ f1.png
│ │
│ ├───Blurred_bg
│ │ ├───GT
│ │ │ gt1.jpg
│ │ │ ...
│ │ │ gt88.jpg
│ │ │
│ │ └───Imgs
│ │ im (1).jpg
│ │ ...
│ │ im (88).jpg
│ │
│ └───...
└───Unlabeled
├───DefocusBlurred
│ └───Blurred_fg
│ │ BlMov_01.mov
│ │ ...
│ │ BlMov_46.mov
│ │
│ └───Imgs
│ BlJPG_01.jpg
│ ...
├───RGB
│ ├───Imgs
│ │ BlJPG_001.jpg
│ │ ...
│ │ BlJPG_205.jpg
│ │
│ └───Vids
│ ├───utils
│ └───Zoo
│ Zoo_001.mp4
│ ...
│ Zoo_205.mp4
└───RGBD
│ data1.mat
│ ...
├───Othersamples
│ ├───DATA1
│ └───...
└───utils
### Dataset Description
Here's an overview of its structure and contents:
1. **Labeled Data**:
- **GT (Ground Truth)**: Contains 175 PNG images representing the ground truth labels for corresponding input images.
- **Imgs**: Contains 175 PNG images, which are RGB images that correspond to the ground truth.
- **Others**:
- **Multiple Scenes**: Contains various scenes (e.g., `Bird/`, `Tennis/`, etc.). Each scene consists of four pairs of RGB images and their corresponding ground truth masks.
- **Blurred_bg**: This folder includes images with blurred backgrounds and corresponding ground truth occlusion segmentation labels.
- **GT**: Contains 88 ground truth occlusion mask.
- **Imgs**: Contains 88 blurred background images in JPG format.
2. **Unlabeled Data**:
- **DefocusBlurred**: Focused on data related to blurred foreground occlusions.
- **Blurred_fg**: Contains 46 video files and `Imgs/'.
- **RGB**: Contains regular RGB images and videos.
- **Imgs**: 205 JPEG images of various scenes with occlusions.
- **Vids**: Includes a total of 214 video files.
- **RGBD**: Contains data for scenes with RGB images and depth data.
- **MAT files**: These files store all the data values and additional camera information for various samples.
- **Othersamples**: Includes additional data samples captured in laboratory.
### Key Dataset Features:
- **Fence Detection**: Designed for detecting fences or fence-like structures that might occlude objects.
- **Defocus Blur**: Contains images and videos with blurred objects, likely to challenge detection and segmentation algorithms.
- **RGBD Data**: Offers depth information alongside RGB images, which can be used for tasks like 3D reconstruction or occlusion handling.
- **Unlabeled and Labeled Data**: Facilitates both supervised and unsupervised learning tasks. The `Labeled`