|
import datasets, os, polars as pl |
|
|
|
specter_dataset: datasets.Dataset = datasets.load_dataset(path = "sentence-transformers/specter", name = "triplet", split = "train") |
|
specter_dataframe: pl.DataFrame = specter_dataset.to_polars() |
|
|
|
train_dataframe: pl.DataFrame = specter_dataframe.group_by("anchor").agg([ |
|
pl.col("positive").alias(name = "positive"), |
|
pl.col("negative").alias(name = "negative") |
|
]).with_columns([ |
|
pl.col("positive").list.head(n = 4), |
|
pl.col("negative").list.head(n = 4) |
|
]).explode(columns = ["positive", "negative"]) |
|
|
|
val_test_dataframe: pl.DataFrame = specter_dataframe.group_by("anchor").agg([ |
|
pl.col("positive").alias(name="positive"), |
|
pl.col("negative").alias(name="negative") |
|
]).with_columns([ |
|
pl.col("positive").list.tail(n = -4), |
|
pl.col("negative").list.tail(n = -4) |
|
]) |
|
|
|
|
|
val_test_dataframe = val_test_dataframe.filter( |
|
pl.col("positive").list.len() > 0 |
|
).explode(columns = ["positive", "negative"]) |
|
|
|
total_len: int = val_test_dataframe.height |
|
val_size: int = int(total_len * 0.6) |
|
val_dataframe: pl.DataFrame = val_test_dataframe.head(n = val_size) |
|
test_dataframe: pl.DataFrame = val_test_dataframe.tail(n = total_len - val_size) |
|
|
|
train_dataset: datasets.Dataset = datasets.Dataset.from_polars(df = train_dataframe) |
|
val_dataset: datasets.Dataset = datasets.Dataset.from_polars(df = val_dataframe) |
|
test_dataset: datasets.Dataset = datasets.Dataset.from_polars(df = test_dataframe) |
|
|
|
train_dataset.push_to_hub(repo_id = "NothingMuch/Specter-Triplet-Split", split = "train", token = os.environ["HUGGINGFACE_TOKEN"]) |
|
val_dataset.push_to_hub(repo_id = "NothingMuch/Specter-Triplet-Split", split = "validation", token = os.environ["HUGGINGFACE_TOKEN"]) |
|
test_dataset.push_to_hub(repo_id = "NothingMuch/Specter-Triplet-Split", split = "test", token = os.environ["HUGGINGFACE_TOKEN"]) |