File size: 2,790 Bytes
a6326c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
from utils import read_json_file, write_jsonl_file, parse
import os
def preprocess(args, split):
path = os.path.join(args.input_dir, f"coqa-{split}-v1.0.json")
data = read_json_file(path)
outfile = os.path.join(args.output_dir, f"{split}.jsonl")
data = data["data"]
turns = []
for i in range(len(data)):
t = {
"turn": "multi",
"locale": "en",
"dialog": [],
"knowledge": {
"type": "dict",
"value": {"source": data[i]["source"], "passage": data[i]["story"]},
},
}
cand_answers = [list(map(lambda x: x["input_text"], data[i]["answers"]))]
assert split != "train" or "additional_answers" not in data[i]
if "additional_answers" in data[i]:
for answers in data[i]["additional_answers"].values():
cand_answers.append(list(map(lambda x: x["input_text"], answers)))
cand_answers = list(zip(*cand_answers))
for q, answers in zip(data[i]["questions"], cand_answers):
dq = {"roles": ["USER"], "utterance": q["input_text"]}
t["dialog"].append(dq)
for answer in answers:
da = {"roles": ["SYSTEM"], "utterance": answer}
t["dialog"].append(da)
turns.append(t)
write_jsonl_file(turns, outfile)
# def preprocess_gold(args, file):
# path = os.path.join(args.input_dir, f"{file}.json")
# data = read_json_file(path)
# data = data["data"]
# turns = []
# for i in range(len(data)):
# t = {
# "turn": "multi",
# "locale": "en",
# "title": {
# "name": data[i]["name"]
# },
# "dialog": [],
# "knowledge": {
# "type": "text",
# "value": data[i]["story"]
# }
# }
# for q, a0, a1, a2, a3 in zip(
# data[i]["questions"],
# data[i]["answers"],
# data[i]["additional_answers"]["0"],
# data[i]["additional_answers"]["1"],
# data[i]["additional_answers"]["2"]
# ):
# t = deepcopy(t)
# dq = {
# "role": "question",
# "utterance": q["input_text"]
# }
# da = {
# "role": "answer",
# "utterance": "\n".join([a0["input_text"], a1["input_text"], a2["input_text"], a3["input_text"]])
# }
# t["dialog"].append(dq)
# t["dialog"].append(da)
# turns.append(t)
# write_jsonl_file(turns, args.output_dir + "/" + file + ".jsonl")
if __name__ == "__main__":
args = parse()
preprocess(args, "train")
preprocess(args, "dev")
|