File size: 2,958 Bytes
a6326c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
from utils import write_jsonl_file, read_csv_file, parse
import os
import pandas as pd

# Refer https://github.com/alexa/dialoglue/blob/master/data_utils/intent_scripts/get_hwu_data.py

LIST_OF_FILES = (
    "alarm_query.csv\nalarm_remove.csv\nalarm_set.csv\naudio_volum"
    "e_down.csv\naudio_volume_mute.csv\naudio_volume_up.csv\ncalend"
    "ar_query.csv\t\ncalendar_remove.csv\t\ncalendar_set.csv\t\ncoo"
    "king_recipe.csv\t\ndatetime_convert.csv\t\ndatetime_query.csv"
    "\t\nemail_addcontact.csv\t\nemail_query.csv\t\nemail_querycon"
    "tact.csv\t\nemail_sendemail.csv\t\ngeneral_affirm.csv\t\ngener"
    "al_commandstop.csv\t\ngeneral_confirm.csv\t\ngeneral_dontcare."
    "csv\t\ngeneral_explain.csv\t\ngeneral_joke.csv\t\ngeneral_neg"
    "ate.csv\t\ngeneral_praise.csv\t\ngeneral_quirky.csv\t\ngenera"
    "l_repeat.csv\t\niot_cleaning.csv\t\niot_coffee.csv\t\niot_hue"
    "_lightchange.csv\t\niot_hue_lightdim.csv\t\niot_hue_lightoff."
    "csv\t\niot_hue_lighton.csv\t\niot_hue_lightup.csv\t\niot_wemo_"
    "off.csv\t\niot_wemo_on.csv\t\nlists_createoradd.csv\t\nlists_"
    "query.csv\t\nlists_remove.csv\t\nmusic_likeness.csv\t\nmusic_q"
    "uery.csv\t\nmusic_settings.csv\t\nnews_query.csv\t\nplay_audio"
    "book.csv\t\nplay_game.csv\t\nplay_music.csv\t\nplay_podcasts."
    "csv\t\nplay_radio.csv\t\nqa_currency.csv\t\nqa_definition.csv"
    "\t\nqa_factoid.csv\t\nqa_maths.csv\t\nqa_stock.csv\t\nrecomme"
    "ndation_events.csv\t\nrecommendation_locations.csv\t\nrecomme"
    "ndation_movies.csv\t\nsocial_post.csv\t\nsocial_query.csv\t\n"
    "takeaway_order.csv\t\ntakeaway_query.csv\t\ntransport_query.c"
    "sv\t\ntransport_taxi.csv\t\ntransport_ticket.csv\t\ntransport"
    "_traffic.csv\t\nweather_query.csv\t".split()
)


def reformat(args, split):
    if split == "train":
        input_dir = os.path.join(args.input_dir, "trainset")
    else:
        input_dir = os.path.join(args.input_dir, "testset", "csv")

    dialogues = []
    for filename in LIST_OF_FILES:
        data = pd.read_csv(os.path.join(input_dir, filename), sep=";")
        for i in range(len(data)):
            utterance = data.iloc[i]["answer_from_anno"]
            domain = data.iloc[i]["scenario"]
            intent = data.iloc[i]["intent"]

            dialogues.append(
                {
                    "turn": "single",
                    "locale": "en",
                    "domain": domain,
                    "dialog": [
                        {
                            "roles": ["USER"],
                            "utterance": utterance,
                            "active_intents": [f"{domain} {intent}"],
                        }
                    ],
                }
            )

    write_jsonl_file(dialogues, os.path.join(args.output_dir, f"{split}.jsonl"))


def preprocess(args):
    reformat(args, "train")
    reformat(args, "test")


if __name__ == "__main__":
    args = parse()
    preprocess(args)