Datasets:

License:
File size: 4,607 Bytes
c1eaa40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
"""
Visualize 3D boxes in Image space.
Align the setting in mmdetection3d:
    * Convert 3D box in nuplan coordinates to camera coordinates.
    * draw 3D box in camera.
"""

import cv2
import numpy as np
from navsim.common.extraction.helpers import transformation


def rotation_3d_in_axis(points, angles, axis=0):
    """Rotate points by angles according to axis.

    Args:
        points (torch.Tensor): Points of shape (N, M, 3).
        angles (torch.Tensor): Vector of angles in shape (N,)
        axis (int, optional): The axis to be rotated. Defaults to 0.

    Raises:
        ValueError: when the axis is not in range [0, 1, 2], it will \
            raise value error.

    Returns:
        torch.Tensor: Rotated points in shape (N, M, 3)
    """
    rot_sin = np.sin(angles)
    rot_cos = np.cos(angles)
    ones = np.ones_like(rot_cos)
    zeros = np.zeros_like(rot_cos)
    if axis == 1:
        rot_mat_T = np.stack(
            [
                np.stack([rot_cos, zeros, -rot_sin]),
                np.stack([zeros, ones, zeros]),
                np.stack([rot_sin, zeros, rot_cos]),
            ]
        )
    elif axis == 2 or axis == -1:
        rot_mat_T = np.stack(
            [
                np.stack([rot_cos, -rot_sin, zeros]),
                np.stack([rot_sin, rot_cos, zeros]),
                np.stack([zeros, zeros, ones]),
            ]
        )
    elif axis == 0:
        rot_mat_T = np.stack(
            [
                np.stack([zeros, rot_cos, -rot_sin]),
                np.stack([zeros, rot_sin, rot_cos]),
                np.stack([ones, zeros, zeros]),
            ]
        )
    else:
        raise ValueError(f"axis should in range [0, 1, 2], got {axis}")
    return np.einsum("aij,jka->aik", points, rot_mat_T)


def plot_rect3d_on_img(img, num_rects, rect_corners, color=(0, 255, 0), thickness=1):
    """Plot the boundary lines of 3D rectangular on 2D images.

    Args:
        img (numpy.array): The numpy array of image.
        num_rects (int): Number of 3D rectangulars.
        rect_corners (numpy.array): Coordinates of the corners of 3D
            rectangulars. Should be in the shape of [num_rect, 8, 2].
        color (tuple[int]): The color to draw bboxes. Default: (0, 255, 0).
        thickness (int, optional): The thickness of bboxes. Default: 1.
    """
    line_indices = (
        (0, 1),
        (0, 3),
        (0, 4),
        (1, 2),
        (1, 5),
        (3, 2),
        (3, 7),
        (4, 5),
        (4, 7),
        (2, 6),
        (5, 6),
        (6, 7),
    )
    for i in range(num_rects):
        corners = rect_corners[i].astype(np.int)
        for start, end in line_indices:
            cv2.line(
                img,
                (corners[start, 0], corners[start, 1]),
                (corners[end, 0], corners[end, 1]),
                color,
                thickness,
                cv2.LINE_AA,
            )
    return img.astype(np.uint8)


def draw_boxes_nuplan_on_img(gt_boxes_nuplan, cam_infos, eps=1e-3):
    for cam_type, cam_info in cam_infos.items():
        cur_img_path = cam_info["data_path"]
        cur_img = cv2.imread(cur_img_path)
        cur_img_h, cur_img_w = cur_img.shape[:2]

        gt_boxes_cams = transformation.transform_nuplan_boxes_to_cam(
            gt_boxes_nuplan,
            cam_info["sensor2lidar_rotation"],
            cam_info["sensor2lidar_translation"],
        )

        # Then convert gt_boxes_cams to corners.
        cur_locs, cur_dims, cur_rots = (
            gt_boxes_cams[:, :3],
            gt_boxes_cams[:, 3:6],
            gt_boxes_cams[:, 6:],
        )
        corners_norm = np.stack(np.unravel_index(np.arange(8), [2] * 3), axis=1)
        corners_norm = corners_norm[[0, 1, 3, 2, 4, 5, 7, 6]]
        corners_norm = corners_norm - np.array([0.5, 0.5, 0.5])
        corners = cur_dims.reshape([-1, 1, 3]) * corners_norm.reshape([1, 8, 3])
        corners = rotation_3d_in_axis(corners, cur_rots.squeeze(-1), axis=1)
        corners += cur_locs.reshape(-1, 1, 3)

        # Then draw project corners to image.
        corners_img, corners_pc_in_fov = transformation.transform_cam_to_img(
            corners.reshape(-1, 3), cam_info["cam_intrinsic"], img_shape=(cur_img_h, cur_img_w)
        )
        corners_img = corners_img.reshape(-1, 8, 2)
        corners_pc_in_fov = corners_pc_in_fov.reshape(-1, 8)
        valid_corners = corners_pc_in_fov.all(-1)
        corners_img = corners_img[valid_corners]
        cur_img = plot_rect3d_on_img(cur_img, len(corners_img), corners_img)
        cv2.imwrite(f"dbg/{cam_type}.png", cur_img)
    return None