Datasets:

License:
File size: 2,930 Bytes
c1eaa40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import cv2
import numpy as np

from navsim.common.extraction.helpers import transformation


def draw_pcs_on_images(pc, cam_infos, eps=1e-3):
    for cam_type, cam_info in cam_infos.items():
        cur_img_path = cam_info["data_path"]
        cur_img = cv2.imread(cur_img_path)
        cur_img_h, cur_img_w = cur_img.shape[:2]

        cur_pc_cam, cur_pc_in_fov = transformation.transform_pcs_to_images(
            pc,
            cam_info["sensor2lidar_rotation"],
            cam_info["sensor2lidar_translation"],
            cam_info["cam_intrinsic"],
            img_shape=(cur_img_h, cur_img_w),
            eps=eps,
        )

        cur_pc_cam = cur_pc_cam[cur_pc_in_fov]
        for x, y in cur_pc_cam:
            cv2.circle(cur_img, (int(x), int(y)), 3, (255, 0, 0), 3)
        cv2.imwrite(f"dbg/{cam_type}.png", cur_img)
    return None


def draw_pcs(points, labels, color_map):
    """Draw point cloud from BEV

    Args:
        points: A ndarray with shape as [-1, 3]
        labels: the label of each point with shape [-1]
        color_map: color of each label.
    """
    import matplotlib.pyplot as plt

    _, ax = plt.subplots(1, 1, figsize=(9, 9))
    axes_limit = 40
    # points: LiDAR points with shape [-1, 3]
    viz_points = points
    dists = np.sqrt(np.sum(viz_points[:, :2] ** 2, axis=1))
    colors = np.minimum(1, dists / axes_limit / np.sqrt(2))

    # prepare color_map
    points_color = color_map[labels] / 255.0  # -1, 3

    point_scale = 0.2
    scatter = ax.scatter(viz_points[:, 0], viz_points[:, 1], c=points_color, s=point_scale)

    ax.plot(0, 0, "x", color="red")
    ax.set_xlim(-axes_limit, axes_limit)
    ax.set_ylim(-axes_limit, axes_limit)
    ax.axis("off")
    ax.set_aspect("equal")
    plt.savefig("dbg/dbg.png", bbox_inches="tight", pad_inches=0, dpi=200)


def draw_sweep_pcs(info, sweeps):
    cur_pc_file = info["lidar_path"]
    cur_pc = transformation._load_points(cur_pc_file)
    viz_pcs = [cur_pc[:, :3]]
    viz_labels = [np.ones_like(cur_pc)[:, 0] * 0.0]

    for idx, sweep in enumerate(sweeps):
        sweep_pc_file = sweep["data_path"]
        sweep_pc = transformation._load_points(sweep_pc_file)
        sweep_pc = transformation.transform_sweep_pc_to_lidar_top(
            sweep_pc, sweep["sensor2lidar_rotation"], sweep["sensor2lidar_translation"]
        )

        viz_pcs.append(sweep_pc)
        viz_labels.append(np.ones_like(sweep_pc)[:, 0] * (idx + 1))

    viz_pcs = np.concatenate(viz_pcs, 0)
    viz_labels = np.concatenate(viz_labels, 0).astype(np.int)
    color_map = np.array(
        [
            [245, 150, 100],
            [245, 230, 100],
            [250, 80, 100],
            [150, 60, 30],
            [255, 0, 0],
            [180, 30, 80],
            [255, 0, 0],
            [30, 30, 255],
            [200, 40, 255],
            [90, 30, 150],
        ]
    )
    draw_pcs(viz_pcs, viz_labels, color_map)
    return None