|
import argparse |
|
import shutil |
|
from typing import Dict, List |
|
|
|
|
|
import numpy as np |
|
from os import listdir |
|
from os.path import isfile, join |
|
|
|
from pyquaternion import Quaternion |
|
|
|
import cv2 |
|
|
|
from tqdm import tqdm |
|
|
|
import os |
|
|
|
import multiprocessing |
|
import pickle |
|
from nuplan.common.actor_state.state_representation import StateSE2 |
|
from nuplan.common.maps.abstract_map import AbstractMap |
|
from nuplan.common.maps.nuplan_map.map_factory import get_maps_api |
|
|
|
from nuplan.database.nuplan_db_orm.nuplandb_wrapper import NuPlanDBWrapper |
|
from nuplan.database.nuplan_db_orm.lidar import Lidar |
|
from nuplan.database.nuplan_db.nuplan_scenario_queries import ( |
|
get_traffic_light_status_for_lidarpc_token_from_db, |
|
get_images_from_lidar_tokens, |
|
get_cameras, |
|
) |
|
from nuplan.planning.scenario_builder.nuplan_db.nuplan_scenario import CameraChannel |
|
from navsim.common.extraction.driving_command import get_driving_command |
|
|
|
from helpers.multiprocess_helper import get_scenes_per_thread |
|
from helpers.canbus import CanBus |
|
from helpers.multisweep_helper import obtain_sensor2top |
|
|
|
NUPLAN_MAPS_ROOT = os.environ["NUPLAN_MAPS_ROOT"] |
|
filtered_classes = ["traffic_cone", "barrier", "czone_sign", "generic_object"] |
|
|
|
|
|
def create_nuplan_info( |
|
nuplan_db_wrapper: NuPlanDBWrapper, db_names: List[str], args |
|
): |
|
nuplan_sensor_root = args.nuplan_sensor_path |
|
|
|
|
|
|
|
|
|
scene_dict = {} |
|
log_sensors = os.listdir(nuplan_sensor_root) |
|
|
|
|
|
for log_db_name in db_names: |
|
log_db = nuplan_db_wrapper.get_log_db(log_db_name) |
|
log_name = log_db.log_name |
|
log_token = log_db.log.token |
|
map_location = log_db.log.location |
|
vehicle_name = log_db.log.vehicle_name |
|
|
|
|
|
map_name = map_location if map_location != "las_vegas" else "us-nv-las-vegas-strip" |
|
map_api = get_maps_api(NUPLAN_MAPS_ROOT, "nuplan-maps-v1.0", map_name) |
|
|
|
log_file = os.path.join(nuplan_db_path, log_db_name + ".db") |
|
if log_db_name not in log_sensors: |
|
continue |
|
|
|
frame_idx = 0 |
|
|
|
|
|
lidar_pc_list = log_db.lidar_pc |
|
lidar_pcs = lidar_pc_list |
|
|
|
|
|
log_cam_infos = {} |
|
for cam in get_cameras(log_file, [str(channel.value) for channel in CameraChannel]): |
|
intrinsics = np.array(pickle.loads(cam.intrinsic), dtype=np.float32) |
|
translation = np.array(pickle.loads(cam.translation), dtype=np.float32) |
|
rotation = np.array(pickle.loads(cam.rotation), dtype=np.float32) |
|
rotation = Quaternion(rotation).rotation_matrix |
|
distortion = np.array(pickle.loads(cam.distortion), dtype=np.float32) |
|
c = dict( |
|
intrinsic=intrinsics, |
|
distortion=distortion, |
|
translation=translation, |
|
rotation=rotation, |
|
) |
|
log_cam_infos[cam.token] = c |
|
|
|
|
|
for start_idx in range(0, len(lidar_pcs)): |
|
retrieved_images = get_images_from_lidar_tokens( |
|
log_file, |
|
[lidar_pcs[start_idx].token], |
|
[str(channel.value) for channel in CameraChannel], |
|
) |
|
if len(list(retrieved_images)) == 8: |
|
break |
|
|
|
|
|
retrieved_images_0 = get_images_from_lidar_tokens( |
|
log_file, [lidar_pcs[start_idx].token], ["CAM_F0"] |
|
) |
|
diff_0 = abs(list(retrieved_images_0)[0].timestamp - lidar_pcs[start_idx].timestamp) |
|
retrieved_images_1 = get_images_from_lidar_tokens( |
|
log_file, [lidar_pcs[start_idx + 1].token], ["CAM_F0"] |
|
) |
|
diff_1 = abs(list(retrieved_images_1)[0].timestamp - lidar_pcs[start_idx + 1].timestamp) |
|
start_idx = start_idx if diff_0 < diff_1 else start_idx + 1 |
|
|
|
|
|
lidar_pc_list = lidar_pc_list[start_idx :: args.sample_interval] |
|
index = -1 |
|
for lidar_pc in tqdm(lidar_pc_list, dynamic_ncols=True): |
|
index += 1 |
|
|
|
|
|
lidar_pc_token = lidar_pc.token |
|
scene_token = lidar_pc.scene_token |
|
pc_file_name = lidar_pc.filename |
|
next_token = lidar_pc.next_token |
|
prev_token = lidar_pc.prev_token |
|
lidar_token = lidar_pc.lidar_token |
|
time_stamp = lidar_pc.timestamp |
|
scene_name = "log-" + lidar_pc.scene.name |
|
lidar_boxes = lidar_pc.lidar_boxes |
|
roadblock_ids = [ |
|
str(roadblock_id) |
|
for roadblock_id in str(lidar_pc.scene.roadblock_ids).split(" ") |
|
if len(roadblock_id) > 0 |
|
] |
|
|
|
|
|
if scene_token not in scene_dict.keys(): |
|
scene_dict[scene_token] = [] |
|
frame_idx = 0 |
|
if frame_idx == 0: |
|
scene_dict[scene_token] = [] |
|
|
|
can_bus = CanBus(lidar_pc).tensor |
|
lidar = log_db.session.query(Lidar).filter(Lidar.token == lidar_token).all() |
|
pc_file_path = os.path.join(args.nuplan_sensor_path, pc_file_name) |
|
|
|
if not os.path.exists(pc_file_path): |
|
|
|
with open("./nofile.log", "a") as f: |
|
f.write(pc_file_path) |
|
f.write("\n") |
|
continue |
|
|
|
traffic_lights = [] |
|
for traffic_light_status in get_traffic_light_status_for_lidarpc_token_from_db( |
|
log_file, lidar_pc_token |
|
): |
|
lane_connector_id: int = traffic_light_status.lane_connector_id |
|
is_red: bool = traffic_light_status.status.value == 2 |
|
traffic_lights.append((lane_connector_id, is_red)) |
|
|
|
ego_pose = StateSE2( |
|
lidar_pc.ego_pose.x, |
|
lidar_pc.ego_pose.y, |
|
lidar_pc.ego_pose.quaternion.yaw_pitch_roll[0], |
|
) |
|
driving_command = get_driving_command(ego_pose, map_api, roadblock_ids) |
|
|
|
info = { |
|
"token": lidar_pc_token, |
|
"frame_idx": frame_idx, |
|
"timestamp": time_stamp, |
|
"log_name": log_name, |
|
"log_token": log_token, |
|
"scene_name": scene_name, |
|
"scene_token": scene_token, |
|
"map_location": map_location, |
|
"roadblock_ids": roadblock_ids, |
|
"vehicle_name": vehicle_name, |
|
"can_bus": can_bus, |
|
"lidar_path": pc_file_name, |
|
"lidar2ego_translation": lidar[0].translation_np, |
|
"lidar2ego_rotation": [ |
|
lidar[0].rotation.w, |
|
lidar[0].rotation.x, |
|
lidar[0].rotation.y, |
|
lidar[0].rotation.z, |
|
], |
|
"ego2global_translation": can_bus[:3], |
|
"ego2global_rotation": can_bus[3:7], |
|
"ego_dynamic_state": [ |
|
lidar_pc.ego_pose.vx, |
|
lidar_pc.ego_pose.vy, |
|
lidar_pc.ego_pose.acceleration_x, |
|
lidar_pc.ego_pose.acceleration_y, |
|
], |
|
"traffic_lights": traffic_lights, |
|
"driving_command": driving_command, |
|
"cams": dict(), |
|
"prev_sweep_token": prev_token, |
|
"next_sweep_token": next_token, |
|
"sweeps": [], |
|
} |
|
info["sample_prev"] = None |
|
info["sample_next"] = None |
|
if index > 0: |
|
info["sample_prev"] = lidar_pc_list[index - 1].token |
|
if index < len(lidar_pc_list) - 1: |
|
next_key_token = lidar_pc_list[index + 1].token |
|
next_key_scene = lidar_pc_list[index + 1].scene_token |
|
info["sample_next"] = next_key_token |
|
else: |
|
next_key_token, next_key_scene = None, None |
|
|
|
if next_key_token == None or next_key_token == "": |
|
frame_idx = 0 |
|
else: |
|
if next_key_scene != scene_token: |
|
frame_idx = 0 |
|
else: |
|
frame_idx += 1 |
|
|
|
|
|
l2e_r = info["lidar2ego_rotation"] |
|
l2e_t = info["lidar2ego_translation"] |
|
e2g_r = info["ego2global_rotation"] |
|
e2g_t = info["ego2global_translation"] |
|
l2e_r_mat = Quaternion(l2e_r).rotation_matrix |
|
e2g_r_mat = Quaternion(e2g_r).rotation_matrix |
|
|
|
|
|
l2e = np.eye(4) |
|
l2e[:3, :3] = l2e_r_mat |
|
l2e[:3, -1] = l2e_t |
|
e2g = np.eye(4) |
|
e2g[:3, :3] = e2g_r_mat |
|
e2g[:3, -1] = e2g_t |
|
lidar2global = np.dot(e2g, l2e) |
|
info["ego2global"] = e2g |
|
info["lidar2ego"] = l2e |
|
info["lidar2global"] = lidar2global |
|
|
|
|
|
retrieved_images = get_images_from_lidar_tokens( |
|
log_file, [lidar_pc.token], [str(channel.value) for channel in CameraChannel] |
|
) |
|
cams = {} |
|
for img in retrieved_images: |
|
channel = img.channel |
|
filename = img.filename_jpg |
|
filepath = os.path.join(args.nuplan_sensor_path, filename) |
|
if not os.path.exists(filepath): |
|
frame_str = f"{log_db_name}, {lidar_pc_token}" |
|
tqdm.tqdm.write(f"camera file missing: {frame_str}") |
|
continue |
|
cam_info = log_cam_infos[img.camera_token] |
|
cams[channel] = dict( |
|
data_path=filename, |
|
sensor2lidar_rotation=cam_info["rotation"], |
|
sensor2lidar_translation=cam_info["translation"], |
|
cam_intrinsic=cam_info["intrinsic"], |
|
distortion=cam_info["distortion"], |
|
) |
|
if len(cams) != 8: |
|
frame_str = f"{log_db_name}, {lidar_pc_token}" |
|
tqdm.write(f"not all cameras are available: {frame_str}") |
|
continue |
|
info["cams"] = cams |
|
|
|
|
|
sweeps = [] |
|
tmp_info = info |
|
count = 0 |
|
while len(sweeps) < args.max_sweeps: |
|
if tmp_info["prev_sweep_token"] == None: |
|
break |
|
|
|
|
|
sweep = obtain_sensor2top( |
|
tmp_info["prev_sweep_token"], log_db, l2e_t, l2e_r_mat, e2g_t, e2g_r_mat, args |
|
) |
|
|
|
|
|
tmp_info = sweep |
|
if count == args.sweep_interval: |
|
if os.path.exists(sweep["data_path"]): |
|
sweeps.append(sweep) |
|
count = 0 |
|
else: |
|
count += 1 |
|
info["sweeps"] = sweeps |
|
|
|
|
|
if not args.is_test: |
|
if args.filter_instance: |
|
fg_lidar_boxes = [ |
|
box for box in lidar_boxes if box.category.name not in filtered_classes |
|
] |
|
else: |
|
fg_lidar_boxes = lidar_boxes |
|
|
|
instance_tokens = [item.token for item in fg_lidar_boxes] |
|
track_tokens = [item.track_token for item in fg_lidar_boxes] |
|
|
|
inv_ego_r = lidar_pc.ego_pose.trans_matrix_inv |
|
ego_yaw = lidar_pc.ego_pose.quaternion.yaw_pitch_roll[0] |
|
|
|
locs = np.array( |
|
[ |
|
np.dot( |
|
inv_ego_r[:3, :3], |
|
(b.translation_np - lidar_pc.ego_pose.translation_np).T, |
|
).T |
|
for b in fg_lidar_boxes |
|
] |
|
).reshape(-1, 3) |
|
dims = np.array([[b.length, b.width, b.height] for b in fg_lidar_boxes]).reshape( |
|
-1, 3 |
|
) |
|
rots = np.array([b.yaw for b in fg_lidar_boxes]).reshape(-1, 1) |
|
rots = rots - ego_yaw |
|
|
|
velocity = np.array([[b.vx, b.vy] for b in fg_lidar_boxes]).reshape(-1, 2) |
|
velocity_3d = np.array([[b.vx, b.vy, b.vz] for b in fg_lidar_boxes]).reshape(-1, 3) |
|
|
|
|
|
for i in range(len(fg_lidar_boxes)): |
|
velo = np.array([*velocity[i], 0.0]) |
|
velo = velo @ np.linalg.inv(e2g_r_mat).T @ np.linalg.inv(l2e_r_mat).T |
|
velocity[i] = velo[:2] |
|
|
|
for i in range(len(fg_lidar_boxes)): |
|
velo = velocity_3d[i] |
|
velo = velo @ np.linalg.inv(e2g_r_mat).T @ np.linalg.inv(l2e_r_mat).T |
|
velocity_3d[i] = velo |
|
|
|
names = [box.category.name for box in fg_lidar_boxes] |
|
names = np.array(names) |
|
gt_boxes_nuplan = np.concatenate([locs, dims, rots], axis=1) |
|
info["anns"] = dict( |
|
gt_boxes=gt_boxes_nuplan, |
|
gt_names=names, |
|
gt_velocity_3d=velocity_3d.reshape(-1, 3), |
|
instance_tokens=instance_tokens, |
|
track_tokens=track_tokens, |
|
) |
|
scene_dict[scene_token].append(info) |
|
del map_api |
|
|
|
pkl_file_path = f"{args.out_dir}/{log_name}.pkl" |
|
os.makedirs(args.out_dir, exist_ok=True) |
|
with open(pkl_file_path, "wb") as f: |
|
pickle.dump(dict(scene_dict), f, protocol=pickle.HIGHEST_PROTOCOL) |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description="Train a detector") |
|
parser.add_argument( |
|
"--thread-num", type=int, default=50, help="number of threads for multi-processing." |
|
) |
|
|
|
|
|
parser.add_argument("--nuplan-root-path", help="the path to nuplan root path.") |
|
parser.add_argument("--nuplan-db-path", help="the dir saving nuplan db.") |
|
parser.add_argument("--nuplan-sensor-path", help="the dir to nuplan sensor data.") |
|
parser.add_argument("--nuplan-map-version", help="nuplan mapping dataset version.") |
|
parser.add_argument("--nuplan-map-root", help="path to nuplan map data.") |
|
parser.add_argument("--out-dir", help="output path.") |
|
|
|
|
|
parser.add_argument("--max-sweeps", type=int, default=10, help="number of point cloud sweeps.") |
|
parser.add_argument( |
|
"--sweep-interval", type=int, default=5, help="interval of point cloud sweeps." |
|
) |
|
parser.add_argument( |
|
"--sample-interval", type=int, default=10, help="interval of key frame samples." |
|
) |
|
parser.add_argument( |
|
"--scene-process-type", |
|
type=str, |
|
default="skip", |
|
help="process type when a scene is processed.", |
|
) |
|
|
|
|
|
parser.add_argument("--save-bev-images", action="store_true", help="XXX") |
|
parser.add_argument("--save_surround_images", action="store_true", help="XXX") |
|
|
|
|
|
parser.add_argument("--is-test", action="store_true", help="Dealing with Test set data.") |
|
parser.add_argument( |
|
"--filter-instance", action="store_true", help="Ignore instances in filtered_classes." |
|
) |
|
parser.add_argument("--split", type=str, default="train", help="Train/Val/Test set.") |
|
|
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
if __name__ == "__main__": |
|
args = parse_args() |
|
|
|
nuplan_root_path = args.nuplan_root_path |
|
nuplan_db_path = args.nuplan_db_path |
|
nuplan_sensor_path = args.nuplan_sensor_path |
|
nuplan_map_version = args.nuplan_map_version |
|
nuplan_map_root = args.nuplan_map_root |
|
out_dir = args.out_dir |
|
|
|
nuplan_db_wrapper = NuPlanDBWrapper( |
|
data_root=nuplan_root_path, |
|
map_root=nuplan_map_root, |
|
db_files=nuplan_db_path, |
|
map_version=nuplan_map_version, |
|
) |
|
|
|
nuplan_db_path = args.nuplan_db_path |
|
db_names_with_extension = [ |
|
f for f in listdir(nuplan_db_path) if isfile(join(nuplan_db_path, f)) |
|
] |
|
db_names = [name[:-3] for name in db_names_with_extension] |
|
db_names.sort() |
|
|
|
print(db_names) |
|
|
|
db_names_split = np.split(np.array(db_names), args.thread_num) |
|
|
|
|
|
manager = multiprocessing.Manager() |
|
|
|
threads = [] |
|
for x in range(args.thread_num): |
|
t = multiprocessing.Process( |
|
target=create_nuplan_info, |
|
name=str(x), |
|
args=(nuplan_db_wrapper, db_names_split[x], args), |
|
) |
|
threads.append(t) |
|
for thr in threads: |
|
thr.start() |
|
for thr in threads: |
|
if thr.is_alive(): |
|
thr.join() |
|
|
|
|
|
|
|
|
|
|
|
|