|
import numpy as np |
|
from pyquaternion import Quaternion |
|
|
|
from nuplan.database.utils.pointclouds.pointcloud import PointCloud |
|
|
|
|
|
def _load_points(pc_file_name): |
|
pc = PointCloud.parse_from_file(pc_file_name).to_pcd_bin2().T |
|
return pc |
|
|
|
|
|
def transform_pcs_to_images( |
|
pc, |
|
cam2lidar_rotation, |
|
cam2lidar_translation, |
|
cam_intrinsic, |
|
img_shape=None, |
|
eps=1e-3, |
|
return_depth=False, |
|
): |
|
"""Transform point clouds from LiDAR coordinates to the camera coordinates. |
|
|
|
Args: |
|
pc: a numpy array with shape [-1, 6] |
|
cam_infos: dict of camera information. |
|
Return: |
|
pc_cam: dict of 2d coordinates in corresponding camera space. |
|
""" |
|
pc_xyz = pc[:, :3] |
|
|
|
lidar2cam_r = np.linalg.inv(cam2lidar_rotation) |
|
lidar2cam_t = cam2lidar_translation @ lidar2cam_r.T |
|
lidar2cam_rt = np.eye(4) |
|
lidar2cam_rt[:3, :3] = lidar2cam_r.T |
|
lidar2cam_rt[3, :3] = -lidar2cam_t |
|
|
|
viewpad = np.eye(4) |
|
viewpad[: cam_intrinsic.shape[0], : cam_intrinsic.shape[1]] = cam_intrinsic |
|
lidar2img_rt = viewpad @ lidar2cam_rt.T |
|
|
|
cur_pc_xyz = np.concatenate([pc_xyz, np.ones_like(pc_xyz)[:, :1]], -1) |
|
cur_pc_cam = lidar2img_rt @ cur_pc_xyz.T |
|
cur_pc_cam = cur_pc_cam.T |
|
|
|
cur_pc_in_fov = cur_pc_cam[:, 2] > eps |
|
depth = cur_pc_cam[..., 2:3] |
|
|
|
cur_pc_cam = cur_pc_cam[..., 0:2] / np.maximum( |
|
cur_pc_cam[..., 2:3], np.ones_like(cur_pc_cam[..., 2:3]) * eps |
|
) |
|
if img_shape is not None: |
|
img_h, img_w = img_shape |
|
cur_pc_in_fov = ( |
|
cur_pc_in_fov |
|
& (cur_pc_cam[:, 0] < (img_w - 1)) |
|
& (cur_pc_cam[:, 0] > 0) |
|
& (cur_pc_cam[:, 1] < (img_h - 1)) |
|
& (cur_pc_cam[:, 1] > 0) |
|
) |
|
if return_depth: |
|
cur_pc_cam = np.concatenate([cur_pc_cam, depth], axis=-1) |
|
return cur_pc_cam, cur_pc_in_fov |
|
|
|
|
|
def transform_cam_to_img(pc_cam, cam_intrinsic, img_shape=None, eps=1e-3, return_depth=False): |
|
"""Transform point clouds from LiDAR coordinates to the camera coordinates. |
|
|
|
Args: |
|
pc: a numpy array with shape [-1, 6] |
|
cam_infos: dict of camera information. |
|
Return: |
|
pc_cam: dict of 2d coordinates in corresponding camera space. |
|
""" |
|
pc_cam = pc_cam[:, :3] |
|
|
|
viewpad = np.eye(4) |
|
viewpad[: cam_intrinsic.shape[0], : cam_intrinsic.shape[1]] = cam_intrinsic |
|
|
|
pc_img = np.concatenate([pc_cam, np.ones_like(pc_cam)[:, :1]], -1) |
|
pc_img = viewpad @ pc_img.T |
|
pc_img = pc_img.T |
|
|
|
cur_pc_in_fov = pc_img[:, 2] > eps |
|
depth = pc_img[..., 2:3] |
|
|
|
pc_img = pc_img[..., 0:2] / np.maximum(pc_img[..., 2:3], np.ones_like(pc_img[..., 2:3]) * eps) |
|
if img_shape is not None: |
|
img_h, img_w = img_shape |
|
cur_pc_in_fov = ( |
|
cur_pc_in_fov |
|
& (pc_img[:, 0] < (img_w - 1)) |
|
& (pc_img[:, 0] > 0) |
|
& (pc_img[:, 1] < (img_h - 1)) |
|
& (pc_img[:, 1] > 0) |
|
) |
|
if return_depth: |
|
pc_img = np.concatenate([pc_img, depth], axis=-1) |
|
return pc_img, cur_pc_in_fov |
|
|
|
|
|
def transform_nuplan_boxes_to_cam(box, cam2lidar_rotation, cam2lidar_translation): |
|
"""Transform point clouds from LiDAR coordinates to the camera coordinates. |
|
|
|
Args: |
|
box: a numpy array with shape [-1, 7] |
|
""" |
|
locs, dims, rots = box[:, :3], box[:, 3:6], box[:, 6:] |
|
dims_cams = dims[:, [0, 2, 1]] |
|
|
|
rots_cam = np.zeros_like(rots) |
|
for idx, rot in enumerate(rots): |
|
rot = Quaternion(axis=[0, 0, 1], radians=rot) |
|
rot = Quaternion(matrix=cam2lidar_rotation).inverse * rot |
|
rots_cam[idx] = -rot.yaw_pitch_roll[0] |
|
|
|
lidar2cam_r = np.linalg.inv(cam2lidar_rotation) |
|
lidar2cam_t = cam2lidar_translation @ lidar2cam_r.T |
|
lidar2cam_rt = np.eye(4) |
|
lidar2cam_rt[:3, :3] = lidar2cam_r.T |
|
lidar2cam_rt[3, :3] = -lidar2cam_t |
|
|
|
locs_cam = np.concatenate([locs, np.ones_like(locs)[:, :1]], -1) |
|
locs_cam = lidar2cam_rt.T @ locs_cam.T |
|
locs_cam = locs_cam.T |
|
locs_cam = locs_cam[:, :-1] |
|
return np.concatenate([locs_cam, dims_cams, rots_cam], -1) |
|
|
|
|
|
def transform_sweep_pc_to_lidar_top(sweep_pc, sensor2lidar_rotation, sensor2lidar_translation): |
|
sweep_xyz = sweep_pc[:, :3] |
|
sweep_xyz = np.concatenate([sweep_xyz, np.ones_like(sweep_xyz)[:, :1]], -1) |
|
|
|
sensor2lidar_rt = np.eye(4) |
|
sensor2lidar_rt[:3, :3] = sensor2lidar_rotation.T |
|
sensor2lidar_rt[3, :3] = sensor2lidar_translation |
|
|
|
sweep_xyz = sweep_xyz @ sensor2lidar_rt |
|
return sweep_xyz[:, :3] |
|
|