|
""" |
|
Visualize 3D boxes in Image space. |
|
Align the setting in mmdetection3d: |
|
* Convert 3D box in nuplan coordinates to camera coordinates. |
|
* draw 3D box in camera. |
|
""" |
|
|
|
import cv2 |
|
import numpy as np |
|
from navsim.common.extraction.helpers import transformation |
|
|
|
|
|
def rotation_3d_in_axis(points, angles, axis=0): |
|
"""Rotate points by angles according to axis. |
|
|
|
Args: |
|
points (torch.Tensor): Points of shape (N, M, 3). |
|
angles (torch.Tensor): Vector of angles in shape (N,) |
|
axis (int, optional): The axis to be rotated. Defaults to 0. |
|
|
|
Raises: |
|
ValueError: when the axis is not in range [0, 1, 2], it will \ |
|
raise value error. |
|
|
|
Returns: |
|
torch.Tensor: Rotated points in shape (N, M, 3) |
|
""" |
|
rot_sin = np.sin(angles) |
|
rot_cos = np.cos(angles) |
|
ones = np.ones_like(rot_cos) |
|
zeros = np.zeros_like(rot_cos) |
|
if axis == 1: |
|
rot_mat_T = np.stack( |
|
[ |
|
np.stack([rot_cos, zeros, -rot_sin]), |
|
np.stack([zeros, ones, zeros]), |
|
np.stack([rot_sin, zeros, rot_cos]), |
|
] |
|
) |
|
elif axis == 2 or axis == -1: |
|
rot_mat_T = np.stack( |
|
[ |
|
np.stack([rot_cos, -rot_sin, zeros]), |
|
np.stack([rot_sin, rot_cos, zeros]), |
|
np.stack([zeros, zeros, ones]), |
|
] |
|
) |
|
elif axis == 0: |
|
rot_mat_T = np.stack( |
|
[ |
|
np.stack([zeros, rot_cos, -rot_sin]), |
|
np.stack([zeros, rot_sin, rot_cos]), |
|
np.stack([ones, zeros, zeros]), |
|
] |
|
) |
|
else: |
|
raise ValueError(f"axis should in range [0, 1, 2], got {axis}") |
|
return np.einsum("aij,jka->aik", points, rot_mat_T) |
|
|
|
|
|
def plot_rect3d_on_img(img, num_rects, rect_corners, color=(0, 255, 0), thickness=1): |
|
"""Plot the boundary lines of 3D rectangular on 2D images. |
|
|
|
Args: |
|
img (numpy.array): The numpy array of image. |
|
num_rects (int): Number of 3D rectangulars. |
|
rect_corners (numpy.array): Coordinates of the corners of 3D |
|
rectangulars. Should be in the shape of [num_rect, 8, 2]. |
|
color (tuple[int]): The color to draw bboxes. Default: (0, 255, 0). |
|
thickness (int, optional): The thickness of bboxes. Default: 1. |
|
""" |
|
line_indices = ( |
|
(0, 1), |
|
(0, 3), |
|
(0, 4), |
|
(1, 2), |
|
(1, 5), |
|
(3, 2), |
|
(3, 7), |
|
(4, 5), |
|
(4, 7), |
|
(2, 6), |
|
(5, 6), |
|
(6, 7), |
|
) |
|
for i in range(num_rects): |
|
corners = rect_corners[i].astype(np.int) |
|
for start, end in line_indices: |
|
cv2.line( |
|
img, |
|
(corners[start, 0], corners[start, 1]), |
|
(corners[end, 0], corners[end, 1]), |
|
color, |
|
thickness, |
|
cv2.LINE_AA, |
|
) |
|
return img.astype(np.uint8) |
|
|
|
|
|
def draw_boxes_nuplan_on_img(gt_boxes_nuplan, cam_infos, eps=1e-3): |
|
for cam_type, cam_info in cam_infos.items(): |
|
cur_img_path = cam_info["data_path"] |
|
cur_img = cv2.imread(cur_img_path) |
|
cur_img_h, cur_img_w = cur_img.shape[:2] |
|
|
|
gt_boxes_cams = transformation.transform_nuplan_boxes_to_cam( |
|
gt_boxes_nuplan, |
|
cam_info["sensor2lidar_rotation"], |
|
cam_info["sensor2lidar_translation"], |
|
) |
|
|
|
|
|
cur_locs, cur_dims, cur_rots = ( |
|
gt_boxes_cams[:, :3], |
|
gt_boxes_cams[:, 3:6], |
|
gt_boxes_cams[:, 6:], |
|
) |
|
corners_norm = np.stack(np.unravel_index(np.arange(8), [2] * 3), axis=1) |
|
corners_norm = corners_norm[[0, 1, 3, 2, 4, 5, 7, 6]] |
|
corners_norm = corners_norm - np.array([0.5, 0.5, 0.5]) |
|
corners = cur_dims.reshape([-1, 1, 3]) * corners_norm.reshape([1, 8, 3]) |
|
corners = rotation_3d_in_axis(corners, cur_rots.squeeze(-1), axis=1) |
|
corners += cur_locs.reshape(-1, 1, 3) |
|
|
|
|
|
corners_img, corners_pc_in_fov = transformation.transform_cam_to_img( |
|
corners.reshape(-1, 3), cam_info["cam_intrinsic"], img_shape=(cur_img_h, cur_img_w) |
|
) |
|
corners_img = corners_img.reshape(-1, 8, 2) |
|
corners_pc_in_fov = corners_pc_in_fov.reshape(-1, 8) |
|
valid_corners = corners_pc_in_fov.all(-1) |
|
corners_img = corners_img[valid_corners] |
|
cur_img = plot_rect3d_on_img(cur_img, len(corners_img), corners_img) |
|
cv2.imwrite(f"dbg/{cam_type}.png", cur_img) |
|
return None |
|
|