from re import A from typing import Dict, List, Tuple import warnings import numpy as np import numpy.typing as npt from shapely.geometry import Point from nuplan.common.maps.abstract_map import AbstractMap from nuplan.common.actor_state.state_representation import StateSE2 from nuplan.common.maps.maps_datatypes import SemanticMapLayer from nuplan.common.maps.abstract_map_objects import ( LaneGraphEdgeMapObject, RoadBlockGraphEdgeMapObject, ) from navsim.planning.simulation.planner.pdm_planner.utils.route_utils import ( route_roadblock_correction, ) from navsim.planning.simulation.planner.pdm_planner.utils.graph_search.dijkstra import ( Dijkstra, ) from navsim.planning.simulation.planner.pdm_planner.utils.pdm_path import PDMPath from navsim.planning.simulation.planner.pdm_planner.utils.pdm_geometry_utils import ( convert_absolute_to_relative_se2_array, ) from navsim.planning.simulation.planner.pdm_planner.utils.pdm_enums import ( SE2Index, ) # shapely runtime warning warnings.filterwarnings("ignore", category=RuntimeWarning) def get_driving_command( ego_pose: StateSE2, map_api: AbstractMap, route_roadblock_ids: List[str], distance: float = 20, lateral_offset: float = 2, ) -> npt.NDArray[np.int]: """ Creates the one-hot (left, forward, right)driving command for the ego vehicle :param ego_pose: (x, y, heading) object for global ego pose :param map_api: nuPlan's map interface :param route_roadblock_ids: roadblock ids of route :param distance: longitudinal distance to interpolate on th centerline, defaults to 10 :param lateral_offset: lateral offset for left/right threshold, to defaults to 2 :return: numpy one-hot array of driving_command """ driving_command = np.zeros((3,), dtype=int) # one-hot: (left, forward, right) # If no route available, go straight if len(route_roadblock_ids) == 0: driving_command[1] = 1 return driving_command # Apply route correction on route_roadblock_ids route_roadblock_dict, _ = get_route_dicts(map_api, route_roadblock_ids) corrected_route_roadblock_ids = route_roadblock_correction( ego_pose, map_api, route_roadblock_dict ) route_roadblock_dict, route_lane_dict = get_route_dicts(map_api, corrected_route_roadblock_ids) # Find the nearest lane, graph search, and centerline extraction current_lane = get_current_lane(ego_pose, route_lane_dict) discrete_centerline = get_discrete_centerline( current_lane, route_roadblock_dict, route_lane_dict ) centerline = PDMPath(discrete_centerline) # Interpolate target distance on centerline current_progress = centerline.project(Point(*ego_pose.array)) target_progress = current_progress + distance current_pose_array, target_pose_array = centerline.interpolate( [current_progress, target_progress], as_array=True ) target_pose_array = convert_absolute_to_relative_se2_array( StateSE2(*current_pose_array), target_pose_array[None,...] )[0] # Threshold for driving command if target_pose_array[SE2Index.Y] >= lateral_offset: driving_command[0] = 1 elif target_pose_array[SE2Index.Y] <= -lateral_offset: driving_command[2] = 1 else: driving_command[1] = 1 # delete some variables for memory management del route_roadblock_dict, route_lane_dict, _, centerline return driving_command def get_route_dicts( map_api: AbstractMap, route_roadblock_ids: List[str] ) -> Tuple[Dict[str, RoadBlockGraphEdgeMapObject], Dict[str, LaneGraphEdgeMapObject]]: """ Loads the roadblock and lane dicts :param map_api: nuPlan's map interface :param route_roadblock_ids: roadblock ids of route :return: tuple of roadblock and lane dicts """ # remove repeated ids while remaining order in list route_roadblock_ids = list(dict.fromkeys(route_roadblock_ids)) route_roadblock_dict: Dict[str, RoadBlockGraphEdgeMapObject] = {} route_lane_dict: Dict[str, LaneGraphEdgeMapObject] = {} for id_ in route_roadblock_ids: block = map_api.get_map_object(id_, SemanticMapLayer.ROADBLOCK) block = block or map_api.get_map_object(id_, SemanticMapLayer.ROADBLOCK_CONNECTOR) route_roadblock_dict[block.id] = block for lane in block.interior_edges: route_lane_dict[lane.id] = lane return route_roadblock_dict, route_lane_dict def get_current_lane( ego_pose: StateSE2, route_lane_dict: Dict[str, LaneGraphEdgeMapObject] ) -> LaneGraphEdgeMapObject: """ Find current lane, either if intersection with ego pose, or by distance. :param ego_pose: (x, y, heading) object for global ego pose :param route_lane_dict: Dictionary of roadblock ids and objects :return: Lane object """ closest_distance = np.inf starting_lane = None for edge in route_lane_dict.values(): if edge.contains_point(ego_pose): starting_lane = edge break distance = edge.polygon.distance(Point(*ego_pose.array)) if distance < closest_distance: starting_lane = edge closest_distance = distance return starting_lane def get_discrete_centerline( current_lane: LaneGraphEdgeMapObject, route_roadblock_dict: Dict[str, RoadBlockGraphEdgeMapObject], route_lane_dict: Dict[str, LaneGraphEdgeMapObject], search_depth: int = 30, ) -> List[StateSE2]: """ Given the current lane, apply graph search, and extract centerline. :param current_lane: Lane object closest to ego :param route_roadblock_dict: Dictionary of roadblock ids and objects :param route_lane_dict: Dictionary of lane ids and objects :param search_depth: max search depth of Dijkstra, defaults to 30 :return: List of (x, y, heading) objects """ roadblocks = list(route_roadblock_dict.values()) roadblock_ids = list(route_roadblock_dict.keys()) # find current roadblock index start_idx = np.argmax(np.array(roadblock_ids) == current_lane.get_roadblock_id()) roadblock_window = roadblocks[start_idx : start_idx + search_depth] graph_search = Dijkstra(current_lane, list(route_lane_dict.keys())) route_plan, _ = graph_search.search(roadblock_window[-1]) centerline_discrete_path: List[StateSE2] = [] for lane in route_plan: centerline_discrete_path.extend(lane.baseline_path.discrete_path) return centerline_discrete_path