import cv2 import numpy as np from navsim.common.extraction.helpers import transformation def draw_pcs_on_images(pc, cam_infos, eps=1e-3): for cam_type, cam_info in cam_infos.items(): cur_img_path = cam_info["data_path"] cur_img = cv2.imread(cur_img_path) cur_img_h, cur_img_w = cur_img.shape[:2] cur_pc_cam, cur_pc_in_fov = transformation.transform_pcs_to_images( pc, cam_info["sensor2lidar_rotation"], cam_info["sensor2lidar_translation"], cam_info["cam_intrinsic"], img_shape=(cur_img_h, cur_img_w), eps=eps, ) cur_pc_cam = cur_pc_cam[cur_pc_in_fov] for x, y in cur_pc_cam: cv2.circle(cur_img, (int(x), int(y)), 3, (255, 0, 0), 3) cv2.imwrite(f"dbg/{cam_type}.png", cur_img) return None def draw_pcs(points, labels, color_map): """Draw point cloud from BEV Args: points: A ndarray with shape as [-1, 3] labels: the label of each point with shape [-1] color_map: color of each label. """ import matplotlib.pyplot as plt _, ax = plt.subplots(1, 1, figsize=(9, 9)) axes_limit = 40 # points: LiDAR points with shape [-1, 3] viz_points = points dists = np.sqrt(np.sum(viz_points[:, :2] ** 2, axis=1)) colors = np.minimum(1, dists / axes_limit / np.sqrt(2)) # prepare color_map points_color = color_map[labels] / 255.0 # -1, 3 point_scale = 0.2 scatter = ax.scatter(viz_points[:, 0], viz_points[:, 1], c=points_color, s=point_scale) ax.plot(0, 0, "x", color="red") ax.set_xlim(-axes_limit, axes_limit) ax.set_ylim(-axes_limit, axes_limit) ax.axis("off") ax.set_aspect("equal") plt.savefig("dbg/dbg.png", bbox_inches="tight", pad_inches=0, dpi=200) def draw_sweep_pcs(info, sweeps): cur_pc_file = info["lidar_path"] cur_pc = transformation._load_points(cur_pc_file) viz_pcs = [cur_pc[:, :3]] viz_labels = [np.ones_like(cur_pc)[:, 0] * 0.0] for idx, sweep in enumerate(sweeps): sweep_pc_file = sweep["data_path"] sweep_pc = transformation._load_points(sweep_pc_file) sweep_pc = transformation.transform_sweep_pc_to_lidar_top( sweep_pc, sweep["sensor2lidar_rotation"], sweep["sensor2lidar_translation"] ) viz_pcs.append(sweep_pc) viz_labels.append(np.ones_like(sweep_pc)[:, 0] * (idx + 1)) viz_pcs = np.concatenate(viz_pcs, 0) viz_labels = np.concatenate(viz_labels, 0).astype(np.int) color_map = np.array( [ [245, 150, 100], [245, 230, 100], [250, 80, 100], [150, 60, 30], [255, 0, 0], [180, 30, 80], [255, 0, 0], [30, 30, 255], [200, 40, 255], [90, 30, 150], ] ) draw_pcs(viz_pcs, viz_labels, color_map) return None