ynhe commited on
Commit
f990fb6
·
1 Parent(s): 813fa51

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -1
README.md CHANGED
@@ -61,10 +61,29 @@ language:
61
  size_categories:
62
  - 1K<n<10K
63
  ---
 
64
 
65
  ## Dataset Description
66
 
67
  - **Repository:** [MVBench](https://github.com/OpenGVLab/Ask-Anything/blob/main/video_chat2/mvbench.ipynb)
68
- - **Paper:** [2311.17005](https://arxiv.org/abs/2311.17005f)
69
  - **Point of Contact:** mailto:[kunchang li]([email protected])
70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
  size_categories:
62
  - 1K<n<10K
63
  ---
64
+ # MVBench
65
 
66
  ## Dataset Description
67
 
68
  - **Repository:** [MVBench](https://github.com/OpenGVLab/Ask-Anything/blob/main/video_chat2/mvbench.ipynb)
69
+ - **Paper:** [2311.17005](https://arxiv.org/abs/2311.17005)
70
  - **Point of Contact:** mailto:[kunchang li]([email protected])
71
 
72
+ ![images](./assert/generation.png)
73
+
74
+ We introduce a novel static-to-dynamic method for defining temporal-related tasks. By converting static tasks into dynamic ones, we facilitate systematic generation of video tasks necessitating a wide range of temporal abilities, from perception to cognition. Guided by task definitions, we then **automatically transform public video annotations into multiple-choice QA** for task evaluation. This unique paradigm enables efficient creation of MVBench with minimal manual intervention while ensuring evaluation fairness through ground-truth video annotations and avoiding biased LLM scoring. The **20** temporal task examples are as follows.
75
+
76
+ ![images](./assert/task_example.png)
77
+
78
+ ## :telescope: Evaluation
79
+
80
+ An evaluation example is provided in [mvbench.ipynb](https://github.com/OpenGVLab/Ask-Anything/blob/main/video_chat2/mvbench.ipynb). Please follow the pipeline to prepare the evaluation code for various MLLMs.
81
+
82
+ - **Preprocess**: We preserve the raw video (high resolution, long duration, etc.) along with corresponding annotations (start, end, subtitles, etc.) for future exploration; hence, the decoding of some raw videos like Perception Test may be slow.
83
+ - **Prompt**: We explore effective system prompts to encourage better temporal reasoning in MLLM, as well as efficient answer prompts for option extraction.
84
+
85
+ ## :bar_chart: Leadrboard
86
+
87
+ While an [Online leaderboard]() is under construction, the current standings are as follows:
88
+
89
+ ![images](./assert/leaderboard.png)