File size: 9,140 Bytes
752c107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import textattack
from textattack.shared import AttackedText
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
from math import floor, sqrt
import csv 

class Clustering:
    def __init__(self, file_, victim_model_wrapper, victim_model, attack):
        self.file = file_
        self.victim_model_wrapper = victim_model_wrapper
        self.victim_model = victim_model
        self.attack = attack

    def get_embedding_layer(self, model, text_input):
        if isinstance(model, textattack.models.helpers.T5ForTextToText):
            raise NotImplementedError(
                "`get_grads` for T5FotTextToText has not been implemented yet."
            )

        model.train()
        embedding_layer = model.get_input_embeddings()
        embedding_layer.weight.requires_grad = True

        model.zero_grad()
        model_device = next(model.parameters()).device
        input_dict = tokenizer(
            [text_input],
            add_special_tokens=True,
            return_tensors="pt",
            padding="max_length",
            truncation=True,
        )
        input_dict = input_dict.to(model_device)
        embedding = embedding_layer(input_dict["input_ids"])
        # embedding = embedding_layer(torch.tensor(input_dict))
        return embedding

    def prepare_sentences(self):
        file = self.file
        victim_model = self.victim_model
        victim_model_wrapper = self.victim_model_wrapper
        attack = self.attack
        with open(file, "r") as f:
            data = json.load(f)
        global_sentences = []
        global_masks = []
        global_scores = []
        for item in data["data"]:
            original_words = item["original"].split()

            # Iterate over each sample
            sentences = []
            masks = []
            scores = []
            _, indices_to_order = attack.get_indices_to_order(
                AttackedText(item["original"])
            )
            for sample in item["samples"]:
                scores.append(sample["score"])
                attacked_text = AttackedText(sample["attacked_text"])
                word2token_mapping_0 = attacked_text.align_with_model_tokens(
                    victim_model_wrapper
                )
                embedding_0 = self.get_embedding_layer(
                    model=victim_model, text_input=sample["attacked_text"]
                )
                embedding_vectors_0 = embedding_0[0].detach().cpu().numpy()

                sentence_embedding = []
                mask = []
                for _, idx in enumerate(indices_to_order):
                    # index of tensor that corresponds to the index of the word
                    matched_tokens_0 = word2token_mapping_0[idx]
                    embedding_from_layer = np.mean(
                        embedding_vectors_0[matched_tokens_0], axis=0
                    )
                    if original_words[idx] != attacked_text.words[idx]:
                        mask.append(1)
                        sentence_embedding.append(embedding_from_layer)
                    else:
                        sentence_embedding.append(embedding_from_layer)
                        mask.append(0)
                sentences.append(sentence_embedding)
                masks.append(mask)
            global_sentences.append(sentences)
            global_masks.append(masks)
            global_scores.append(scores)
        return global_sentences, global_masks, global_scores

    def get_unified_mask(self, masks):

        unified_mask = np.zeros_like(masks[0])
        for mask in masks:

            unified_mask = np.logical_or(unified_mask, mask)

        return unified_mask.astype(int)

    def get_global_unified_masks(self, masks):
        global_unified_masks = [self.get_unified_mask(masks=mask) for mask in masks]

        return global_unified_masks

    def apply_mask_on_vectors(self, sentences, mask):
        for i in range(len(sentences)):
            sentence = sentences[i]

            sentences[i] = [
                sentence[j] if mask[j] == 1 else np.zeros_like(sentence[j])
                for j in range(len(sentence))
            ]

        return sentences

    def apply_mask_on_global_vectors(self, global_sentences, unified_masks):

        return [
            self.apply_mask_on_vectors(sentences, mask)
            for sentences, mask in zip(global_sentences, unified_masks)
        ]

    def matrix_to_sentences(self, matrix_sentences):

        return np.vstack([np.concatenate(sentence) for sentence in matrix_sentences])

    def global_matrix_to_global_sentences(self, global_matrix_sentences):
        # TODO : check for the compatibility of the tex firs \u00e3
        return [
            self.matrix_to_sentences(sentences) for sentences in global_matrix_sentences
        ]

    def find_best_clustering(self, sentences, max_clusters, method="silhouette"):
        if method == "silhouette":
            max_silhouette_avg = -1
            final_cluster_labels = None
            best_k = 2
            
            for num_clusters in range(1, max_clusters + 1):

                kmeans = KMeans(n_clusters=num_clusters).fit(sentences)

                cluster_labels = kmeans.labels_
                silhouette_avg = silhouette_score(sentences, cluster_labels)

                if silhouette_avg > max_silhouette_avg:
                    max_silhouette_avg = silhouette_avg
                    final_cluster_labels = cluster_labels
                    best_k = num_clusters

            return kmeans.cluster_centers_, final_cluster_labels
        elif method == "thumb-rule":

            best_k = floor(sqrt(len(sentences)/2)) + 1
            kmeans = KMeans(n_clusters=best_k).fit(sentences)

            return kmeans.cluster_centers_, kmeans.labels_
        elif "custom":
            best_k = 5
            kmeans = KMeans(n_clusters=best_k).fit(sentences)

            return kmeans.cluster_centers_, kmeans.labels_

    def find_global_best_clustering(

        self, global_sentences, max_clusters_per_group, method

    ):
        return [
            self.find_best_clustering(
                sentences,
                min(len(sentences) - 1, max_clusters_per_group),
                method=method,
            )
            for sentences in global_sentences
        ]

    def get_global_distances(self, sentences, global_clustering):
        global_distances = []
        for X, clustering in zip(sentences, global_clustering):
            centroids = clustering[0]
            labels = clustering[1]
            global_distances.append(
                [
                    np.sqrt(np.sum((X[i] - centroids[labels[i]]) ** 2))
                    for i in range(len(X))
                ]
            )
        return global_distances

    def select_diverce_samples(self, scores, distances, clustering):

        scores_ = np.array(scores)
        distances_ = np.array(distances)
        labels_ = np.array(clustering)
        selected_samples = []

        normalized_distances = (distances_) / sum(distances_)

        finalscores = scores / normalized_distances

        clusters = np.unique(labels_)

        for cluster in clusters:

            indices = np.where(labels_ == cluster)[0]

            cluster_finalscores = finalscores[indices]

            best_sample_index = indices[np.argmin(cluster_finalscores)]

            selected_samples.append(best_sample_index)
        return selected_samples

    def global_select_diverce_sample(self, global_scores, sentences, global_clustering):
        global_distances = self.get_global_distances(sentences, global_clustering)
        labels_ = [X[1] for X in global_clustering]

        return [
            self.select_diverce_samples(scores, distances, clustering)
            for scores, distances, clustering in zip(
                global_scores, global_distances, labels_
            )
        ]

    def save_json(self, selected_samples, output):

        data = json.load(open(self.file))

        selected_data = []

        for item, indices in zip(data["data"], selected_samples):

            new_item = item.copy()

            new_item["samples"] = [item["samples"][i] for i in indices]

            selected_data.append(new_item)

        with open(output, "w") as f:
            json.dump({"data": selected_data}, f)
    
    def save_csv(self, selected_samples, ground_truth_output, train_file):

        with open(self.file) as f:
            data = json.load(f)["data"]

        with open(train_file, 'a', newline='') as f:
            writer = csv.writer(f)

            for item, indices in zip(data, selected_samples):

                samples = [item["samples"][i] for i in indices]  

                for sample in samples:
                    row = [sample, ground_truth_output]
                    writer.writerow(row)