File size: 29,836 Bytes
6e0fc99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 |
import random
from textattack.search_methods import SearchMethod
from textattack.goal_function_results import GoalFunctionResultStatus
class GreedyMultipleGeneration(SearchMethod):
def __init__(
self,
wir_method="delete",
k=30,
embed=None,
file=None,
rollback_level=3,
naive=False,
clust=None,
train_file="train_file.csv",
):
self.wir_method = wir_method
self.k = k # maximum iterations
self.embed = embed # universal sentence encoder
self.file = file # similarity file to store the textual similarity
self.naive = naive
self.rollback_level = rollback_level
self.successful_attacks = {}
self.clust = clust
def _get_index_order(self, initial_text, indices_to_order):
"""Returns word indices of ``initial_text`` in descending order of
importance."""
if "unk" in self.wir_method:
leave_one_texts = [
initial_text.replace_word_at_index(i, "[UNK]") for i in indices_to_order
]
leave_one_results, search_over = self.get_goal_results(leave_one_texts)
index_scores = np.array([result.score for result in leave_one_results])
elif "delete" in self.wir_method:
leave_one_texts = [
initial_text.delete_word_at_index(i) for i in indices_to_order
]
leave_one_results, search_over = self.get_goal_results(leave_one_texts)
# print(f"leave_one_results : {leave_one_results}")
# print(f"search_over : {search_over}")
index_scores = np.array([result.score for result in leave_one_results])
elif "weighted-saliency" in self.wir_method:
# first, compute word saliency
leave_one_texts = [
initial_text.replace_word_at_index(i, "unk") for i in indices_to_order
]
leave_one_results, search_over = self.get_goal_results(leave_one_texts)
saliency_scores = np.array([result.score for result in leave_one_results])
softmax_saliency_scores = softmax(
torch.Tensor(saliency_scores), dim=0
).numpy()
# compute the largest change in score we can find by swapping each word
delta_ps = []
for idx in indices_to_order:
# Exit Loop when search_over is True - but we need to make sure delta_ps
# is the same size as softmax_saliency_scores
if search_over:
delta_ps = delta_ps + [0.0] * (
len(softmax_saliency_scores) - len(delta_ps)
)
break
transformed_text_candidates = self.get_transformations(
initial_text,
original_text=initial_text,
indices_to_modify=[idx],
)
if not transformed_text_candidates:
# no valid synonym substitutions for this word
delta_ps.append(0.0)
continue
swap_results, search_over = self.get_goal_results(
transformed_text_candidates
)
score_change = [result.score for result in swap_results]
if not score_change:
delta_ps.append(0.0)
continue
max_score_change = np.max(score_change)
delta_ps.append(max_score_change)
index_scores = softmax_saliency_scores * np.array(delta_ps)
elif "gradient" in self.wir_method:
victim_model = self.get_victim_model()
index_scores = np.zeros(len(indices_to_order))
grad_output = victim_model.get_grad(initial_text.tokenizer_input)
gradient = grad_output["gradient"]
word2token_mapping = initial_text.align_with_model_tokens(victim_model)
for i, index in enumerate(indices_to_order):
matched_tokens = word2token_mapping[index]
if not matched_tokens:
index_scores[i] = 0.0
else:
agg_grad = np.mean(gradient[matched_tokens], axis=0)
index_scores[i] = np.linalg.norm(agg_grad, ord=1)
search_over = False
index_order = np.array(indices_to_order)[(-index_scores).argsort()]
index_scores = sorted(index_scores, reverse=True)
return index_order, search_over, index_scores
# This present a rollback for reducing perturbation only
def swap_to_origin(self, cur_result, initial_result, index):
"""Replace the chosen word with it origin a return a result instance"""
new_attacked_text = cur_result.attacked_text.replace_word_at_index(
index, initial_result.attacked_text.words[index]
)
result, _ = self.get_goal_results([new_attacked_text])
return result[0]
def check_synonym_validity(
ind, ind_synonym, Synonym_indices, Current_attacked_Results, j, synonym
):
"""Checks if a synonym is valid for a given index in the attacked text.
Args:
ind: The index of the word in the attacked text.
ind_synonym: The index of the synonym in the list of synonyms.
Synonym_indices: A dictionary of synonym indices.
Current_attacked_Results: A list of AttackedResult objects.
j: The index of the current AttackedResult object in the list.
synonym: The synonym to check.
Returns:
True if the synonym is valid, False otherwise."""
# Check if the synonym has already been chosen.
if (ind, ind_synonym) in Synonym_indices:
return False
# Get the current attacked text and its words.
current_attacked_text = Current_attacked_Results[j].attacked_text
current_attacked_words = current_attacked_text.words
# Check if the synonym is already present in the attacked text.
if synonym in current_attacked_words[ind]:
return False
return True
def generate_naive_attack(self, initial_result):
curent_result = initial_result
# dict of preturbed indexes with theire scores on on the original text
perturbed_indexes = {}
# possible synonyms of each index with theire scores on the original text to reduce avg num queries
synonyms = {}
# to track indexes with no transformation so we avoid recalculate them to reduce avg num queries
non_usefull_indexes = []
attacked_text = initial_result.attacked_text
_, indices_to_order = self.get_indices_to_order(attacked_text)
# Sort words by order of importance
index_order, search_over, _ = self._get_index_order(
attacked_text, indices_to_order
)
# iterate through words by theire importance
for index in index_order:
if search_over:
break
transformed_text_candidates = self.get_transformations(
curent_result.attacked_text,
original_text=initial_result.attacked_text,
indices_to_modify=[index],
)
if len(transformed_text_candidates) == 0:
# track unusefull words to optimize the code .
non_usefull_indexes.append(index)
continue
else:
results, search_over = self.get_goal_results(
transformed_text_candidates
)
max_result = max(results, key=lambda x: x.score)
if max_result.score > curent_result.score:
if self.naive == False:
# store perturbed indexes with theire score
perturbed_indexes[index] = max_result.score - curent_result.score
# add all synonyms except the one we ve been using
synonyms[index] = [
(results[i].score, trans.words[index])
for i, trans in enumerate(transformed_text_candidates)
if trans.words[index] != max_result.attacked_text.words[index]
]
curent_result = max_result
if curent_result.goal_status == GoalFunctionResultStatus.SUCCEEDED:
return (
curent_result,
perturbed_indexes,
non_usefull_indexes,
synonyms,
curent_result.goal_status,
)
return (
curent_result,
perturbed_indexes,
non_usefull_indexes,
synonyms,
curent_result.goal_status,
)
# TODO we can add depth to track how many words rolled back for more statistics
def perturbed_index_swap(
self,
initial_result,
curent_result,
non_perturbed_indexes,
perturbed_indexes,
synonyms,
steps,
):
past_curent_result = curent_result
# the index with minimum perturbation
rollback_found = False
steps = min(steps, len(perturbed_indexes) - 1)
sucsefull_attacks = []
for _ in range(steps):
# TODO getting the least important perturbated word in the new attacked sample costs a lot
rollback_index = min(perturbed_indexes, key=perturbed_indexes.get)
# TODO remove from perturbed_indexes list and add it to non_perturbed_indexes but with punalitié
# how punalité should look like ? it could be at the end of the quee with visited flag
# or we can just eliminate it .
perturbed_indexes.pop(rollback_index, None)
for index in non_perturbed_indexes:
# early returning
if len(perturbed_indexes) == 1:
return (
curent_result,
non_perturbed_indexes,
perturbed_indexes,
synonyms,
sucsefull_attacks,
rollback_found,
)
# get candidates for non perturbed word
transformed_text_candidates = self.get_transformations(
curent_result.attacked_text,
original_text=initial_result.attacked_text,
indices_to_modify=[index],
)
if len(transformed_text_candidates) == 0:
non_perturbed_indexes.remove(index)
continue # wa7ed ma chaf wa7ed
results, _ = self.get_goal_results(transformed_text_candidates)
# we add one perturbed word
max_result = max(results, key=lambda x: x.score)
for res in results:
if res.score > curent_result.score:
if res.goal_status == GoalFunctionResultStatus.SUCCEEDED:
synonyms = self.update_synonyms(
synonyms=synonyms,
index_to_add=index,
index_to_remove=None,
curent_result=res,
results=results,
transformed_text_candidates=transformed_text_candidates,
)
# stock this sucssefull attack
sucsefull_attacks.append(res)
# we get better score
if max_result.score > curent_result.score:
# eplore minimum perturbation on the original text
inferior = min(perturbed_indexes, key=perturbed_indexes.get)
non_perturbed_indexes.remove(index) # remove perturbed index
perturbed_indexes[index] = max_result.score - curent_result.score
# restore one perturbed
result_rollback = self.swap_to_origin(
max_result, initial_result, rollback_index
)
perturbed_indexes.pop(inferior, None)
new_attacked_text = (
result_rollback.attacked_text.replace_word_at_index(
inferior,
initial_result.attacked_text.words[inferior],
)
)
result, _ = self.get_goal_results([new_attacked_text])
result_rollback = max(result, key=lambda x: x.score)
for res in result:
if res.goal_status == GoalFunctionResultStatus.SUCCEEDED:
synonyms = self.update_synonyms(
synonyms,
index,
inferior,
res,
results,
transformed_text_candidates,
)
# stock this sucssefull attack
sucsefull_attacks.append(res)
if (
result_rollback.goal_status
== GoalFunctionResultStatus.SUCCEEDED
):
rollback_found = True
synonyms = self.update_synonyms(
synonyms,
index,
inferior,
result_rollback,
results,
transformed_text_candidates,
)
curent_result = result_rollback
if rollback_found:
return (
curent_result,
non_perturbed_indexes,
perturbed_indexes,
synonyms,
sucsefull_attacks,
rollback_found,
)
return (
past_curent_result,
non_perturbed_indexes,
perturbed_indexes,
synonyms,
sucsefull_attacks,
rollback_found,
)
def update_synonyms(
self,
synonyms,
index_to_add=None,
index_to_remove=None,
curent_result=None,
results=None,
transformed_text_candidates=None,
):
"""Return an updated list of synonyms"""
if index_to_remove in synonyms and len(synonyms[index_to_remove]) != 0:
# remove the used synonym of certain index
synonyms[index_to_remove] = [
syn
for syn in synonyms[index_to_remove]
if syn[1] != curent_result.attacked_text.words[index_to_remove]
]
# add synonyms of new perturbated word with their score
if index_to_add is not None and transformed_text_candidates is not None:
synonyms[index_to_add] = [
(results[i].score, trans.words[index_to_add])
for i, trans in enumerate(transformed_text_candidates)
if trans.words[index_to_add]
!= curent_result.attacked_text.words[index_to_add]
]
return synonyms
def get_non_perturbed_indexes(
self, initial_result, perturbed_indexes, non_usefull_indexes
):
"""Return a list of non perturbed indexes"""
all_indexes = set(range(len(initial_result.attacked_text.words)))
perturbed_indexes_set = set(perturbed_indexes.keys())
non_usefull_indexes_set = set(non_usefull_indexes)
non_perturbed_indexes = list(
all_indexes - perturbed_indexes_set - non_usefull_indexes_set
)
return non_perturbed_indexes
def perform_search(self, initial_result):
(
curent_result,
perturbed_indexes,
non_usefull_indexes,
synonyms,
goal_statut,
) = self.generate_naive_attack(initial_result)
sucsefull_attacks = [curent_result]
new_curent_sucsefull_attacks = [curent_result]
if not self.naive:
# perturbed_index_swap is our 1s priority (in case of attack succeed goal_statut = 0 )
for i in range(self.k):
non_perturbed_indexes = self.get_non_perturbed_indexes(
initial_result, perturbed_indexes, non_usefull_indexes
)
if len(new_curent_sucsefull_attacks) != 0:
# how to decide on the next text to be treated here we work on the the one with max score
curent_result = max(
new_curent_sucsefull_attacks, key=lambda x: x.score
)
new_curent_sucsefull_attacks.remove(curent_result)
else:
curent_result, synonyms, synonym_found = self.swap_to_synonym(
curent_result, synonyms, perturbed_indexes
)
if synonym_found == True:
sucsefull_attacks.append(curent_result)
new_curent_sucsefull_attacks.append(curent_result)
continue
else:
non_perturbed_indexes = self.get_non_perturbed_indexes(
initial_result, perturbed_indexes, non_usefull_indexes
)
(
non_perturbed_indexes,
perturbed_indexes,
synonyms,
max_result,
sample_found,
) = self.random_selection(
non_perturbed_indexes,
perturbed_indexes,
synonyms,
curent_result,
initial_result,
)
if sample_found == True:
new_curent_sucsefull_attacks.append(max_result)
sucsefull_attacks.append(curent_result)
else:
break
if i % 3 == 0:
non_perturbed_indexes = self.get_non_perturbed_indexes(
initial_result, perturbed_indexes, non_usefull_indexes
)
(
non_perturbed_indexes,
perturbed_indexes,
synonyms,
max_result,
sample_found,
) = self.random_selection(
non_perturbed_indexes,
perturbed_indexes,
synonyms,
curent_result,
initial_result,
)
if sample_found == True:
new_curent_sucsefull_attacks.append(max_result)
sucsefull_attacks.append(curent_result)
if len(perturbed_indexes) > 1 and not goal_statut:
non_perturbed_indexes = self.get_non_perturbed_indexes(
initial_result, perturbed_indexes, non_usefull_indexes
)
(
curent_result,
non_perturbed_indexes,
perturbed_indexes,
synonyms,
sucsefull_attacks_partial,
rollback_found,
) = self.perturbed_index_swap(
initial_result,
curent_result,
non_perturbed_indexes,
perturbed_indexes,
synonyms,
steps=self.rollback_level,
)
if len(sucsefull_attacks_partial) != 0:
sucsefull_attacks.extend(sucsefull_attacks_partial)
new_curent_sucsefull_attacks.extend(sucsefull_attacks_partial)
# Action 2: the case where no rollback found we try to swap synonym and we aim to get better result
if rollback_found == False:
curent_result, synonyms, synonym_found = self.swap_to_synonym(
curent_result, synonyms, perturbed_indexes
)
if synonym_found == True:
sucsefull_attacks.append(curent_result)
new_curent_sucsefull_attacks.append(curent_result)
# if it's a failed attack we give chance for an other synonym
# we will pass it for now because no improvment were found
"""elif goal_statut == 1:
curent_result, synonyms, goal_statut = self.swap_to_synonym(
curent_result, synonyms, perturbed_indexes
)"""
if goal_statut == 0:
sucsefull_attacks_text_scores = []
sucsefull_attacks_text_scores = [
(atk.attacked_text, atk.score)
for atk in sucsefull_attacks
if atk.score > 0.5
]
sucsefull_attacks_text_scores = list(set(sucsefull_attacks_text_scores))
self.successful_attacks[initial_result.attacked_text] = (
sucsefull_attacks_text_scores
)
ground_truth_output = sucsefull_attacks[0].ground_truth_output
self.save_to_train(
self,
initial_result.attacked_text,
sucsefull_attacks_text_scores,
ground_truth_output,
)
try:
best_result = self.min_perturbation(
sucsefull_attacks, initial_result.attacked_text
)
return best_result
except:
return curent_result
def save_to_train(
self,
original_text,
sucsefull_attacks_text_scores,
ground_truth_output,
train_file,
):
successful_attacks = {
original_text.attacked_text: sucsefull_attacks_text_scores
}
self.save_to_JSON(filename="temp.json", successful_attacks=successful_attacks)
self.pipeline(ground_truth_output, train_file)
def pipeline(self, ground_truth_output, train_file):
clust = self.clust
clust.file_ = "temp.json"
sentence_embedding_vectors, masks, scores = clust.prepare_sentences()
unified_mask = clust.get_global_unified_masks(masks=masks)
sentences = clust.apply_mask_on_global_vectors(
global_sentences=sentence_embedding_vectors, unified_masks=unified_mask
)
sentences = clust.global_matrix_to_global_sentences(
global_matrix_sentences=sentences
)
global_clustering = clust.find_global_best_clustering(
sentences, 10, "thumb-rule"
)
selected_samples = clust.global_select_diverce_sample(
scores, sentences, global_clustering
)
clust.save_csv(selected_samples, ground_truth_output, train_file)
def save_to_JSON(self, filename, successful_attacks):
data_list = []
input_dict = {}
for atk in successful_attacks:
successful_attacks_with_scores = [
(atk, score) for atk, score in successful_attacks[atk]
]
input_dict[" ".join(atk.words)] = successful_attacks_with_scores
for original, samples in input_dict.items():
samples_list = [
{"attacked_text": " ".join(text.words), "score": score}
for text, score in samples
]
data_list.append({"original": original, "samples": samples_list})
# Save the formatted data to a JSON file
with open(filename, "w") as json_file:
json.dump({"data": data_list}, json_file, indent=4)
def swap_to_synonym(self, curent_result, synonyms, perturbed_indexes):
# giving chance to the second synonym of the most perturbated word if exists !
found = False
for index in perturbed_indexes:
if index in synonyms and len(synonyms[index]) != 0:
# what about other indexes we may give them chance too !
# response : experiments shows that there is no much improvment taking in consideration the high increase of avg Q-num
synonym = max(synonyms[index], key=lambda x: x[0])
if synonym[0] > 0.8:
new_attacked_text = (
curent_result.attacked_text.replace_word_at_index(
index,
synonym[1],
)
)
curent_result.attacked_text = (
curent_result.attacked_text.replace_word_at_index(
index,
synonym[1],
)
)
synonyms = self.update_synonyms(
synonyms=synonyms,
index_to_remove=index,
curent_result=curent_result,
)
found = True
return curent_result, synonyms, found
# remove index with 0 synonymswithin the list
synonyms.pop(index, None)
return curent_result, synonyms, found
def min_perturbation(self, results, original_text):
# Initialize minimum score and result
min_score = float("inf")
min_result = None
original_text_splited = original_text.words
for result in results:
# Calculate perturbation as the number of words changed
attacked_text = result.attacked_text
perturbation = sum(
i != j for i, j in zip(original_text_splited, attacked_text.words)
)
# Update minimum score and result if necessary
if perturbation < min_score:
min_score = perturbation
min_result = result
return min_result
def check_transformation_compatibility(self, transformation):
"""Since it ranks words by their importance, the algorithm is
limited to word swap and deletion transformations."""
return transformation_consists_of_word_swaps_and_deletions(transformation)
def random_selection(
self,
non_perturbed_indexes,
perturbed_indexes,
synonyms,
curent_result,
initial_result,
):
max_iterations = len(non_perturbed_indexes)
sample_found = False
for _ in range(max_iterations):
random_index = random.choice(non_perturbed_indexes)
transformed_text_candidates = self.get_transformations(
curent_result.attacked_text,
original_text=initial_result.attacked_text,
indices_to_modify=[random_index],
)
if len(transformed_text_candidates) == 0:
non_perturbed_indexes.remove(random_index)
continue
results, _ = self.get_goal_results([transformed_text_candidates[0]])
# we add one perturbed word
max_result = max(results, key=lambda x: x.score)
sample_found = True
# update synonym
synonyms = self.update_synonyms(
synonyms=synonyms,
index_to_add=random_index,
curent_result=curent_result,
results=results,
transformed_text_candidates=[transformed_text_candidates[0]],
)
# penalty on existing indexes
for index in perturbed_indexes:
perturbed_indexes[index] = perturbed_indexes[index] * 0.9
perturbed_indexes[random_index] = max_result.score - curent_result.score
non_perturbed_indexes.remove(random_index)
return (
non_perturbed_indexes,
perturbed_indexes,
synonyms,
max_result,
sample_found,
)
return (
non_perturbed_indexes,
perturbed_indexes,
synonyms,
curent_result,
sample_found,
)
@property
def is_black_box(self):
if "gradient" in self.wir_method:
return False
else:
return True
def extra_repr_keys(self):
return ["wir_method"]
|