Datasets:
File size: 2,592 Bytes
1a503ea a062ec7 1a503ea a062ec7 fa0a82a a062ec7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
annotations_creators:
- no-annotation
language:
- pt
license:
- other
multilinguality:
- monolingual
pretty_name: ParlamentoPT
size_categories:
- 1M<n<10M
source_datasets:
- original
task_categories:
- text-generation
- fill-mask
task_ids:
- language-modeling
- masked-language-modeling
tags:
- parlamentopt
- parlamento
- albertina-pt*
- albertina-ptpt
- albertina-ptbr
- fill-mask
- bert
- deberta
- portuguese
- encoder
- foundation model
---
# Dataset Card for ParlamentoPT
### Dataset Summary
The ParlamentoPT is a **Portuguese** language data set obtained by collecting publicly available documents containing transcriptions of debates in the Portuguese Parliament.
The data was collected from the Portuguese Parliament portal in accordance with its [open data policy](https://www.parlamento.pt/Cidadania/Paginas/DadosAbertos.aspx).
This dataset was collected with the purpose of creating the [Albertina-PT*](https://huggingface.co/PORTULAN/albertina-ptpt) language model, and it serves as training data for model development.
The development of the model is a collaborative effort between the University of Lisbon and the University of Porto in Portugal
</br>
# Citation
When using or citing this data set, kindly cite the following publication:
``` latex
@misc{albertina-pt,
title={Advancing Neural Encoding of Portuguese
with Transformer Albertina PT-*},
author={João Rodrigues and Luís Gomes and João Silva and
António Branco and Rodrigo Santos and
Henrique Lopes Cardoso and Tomás Osório},
year={2023},
eprint={?},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<br>
# Acknowledgments
The research reported here was partially supported by: PORTULAN CLARIN—Research Infrastructure for the Science and Technology of Language,
funded by Lisboa 2020, Alentejo 2020 and FCT—Fundação para a Ciência e Tecnologia under the
grant PINFRA/22117/2016; research project ALBERTINA - Foundation Encoder Model for Portuguese and AI, funded by FCT—Fundação para a Ciência e Tecnologia under the
grant CPCA-IAC/AV/478394/2022; innovation project ACCELERAT.AI - Multilingual Intelligent Contact Centers, funded by IAPMEI, I.P. - Agência para a Competitividade e Inovação under the grant C625734525-00462629, of Plano de Recuperação e Resiliência, call RE-C05-i01.01 – Agendas/Alianças Mobilizadoras para a Reindustrialização; and LIACC - Laboratory for AI and Computer Science, funded by FCT—Fundação para a Ciência e Tecnologia under the grant FCT/UID/CEC/0027/2020. |